首页|基于深度学习的相干循环平稳信号波达方向估计

基于深度学习的相干循环平稳信号波达方向估计

扫码查看
针对传统解相干的多重信号分类(MUSIC)算法在小信噪比和非平稳信号的情况下识别精度不高的问题,提出了一种结合了深度学习的波达方向(DOA)估计算法。该算法采用线性等距阵列接收相干的循环平稳信号,针对循环平稳信号的循环频率求出循环自相关函数并构造数据矢量矩阵,再将所得的矩阵通过矢量奇异值法分解,最后再将分解后的矩阵输入到训练好的卷积神经网络中得到DOA估计的结果。并且相较于传统的DOA估计算法,采用了卷积神经网络的估计时间更少。实验仿真结果表明,在非平稳信号、低信噪比环境下,该算法的均方根误差比现有最优算法最高降低了1度。
Directions-of-arrival Estimation of Coherent Cyclostationary Signals Based on Deep Learning
In this paper,we focus on the problem of direction-of-arrival(DOA)estimation with applications of deep learning in the case of small signal-to-noise ratio and non-stationary signals.The paper adopts linear equidistant array to receive coherent cyclosta-tionary signals,calculates the cyclic autocorrelation function of cyclostationary signals and constructs the data vector matrix,then de-composes the obtained matrix by vector singular value method,and finally inputs the decomposed matrix into convolutional neural network to obtain the DOA estimation result.Compared with the traditional DOA estimation algorithm,the convolution neural net-work has less estimation time.The simulations show that the root mean square error of the algorithm is reduced by 1 degree com-pared with the existing optimal algorithm in the environment of non-stationary signal and low signal-to-noise ratio.

DOA estimationSVD algorithmMUSIC algorithmcoherent signalcyclic stationary signalconvolutional neural net-work

周巍、张骄

展开 >

山西大学 物理电子工程学院,山西 太原 030006

DOA估计 矢量奇异值法 多重信号分类算法 相干信号 循环平稳信号 卷积神经网络

国家自然科学基金国家自然科学基金广东省光纤传感与通信技术重点实验室开放基金

6207128261775126

2024

山西大学学报(自然科学版)
山西大学

山西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.287
ISSN:0253-2395
年,卷(期):2024.47(5)