首页|基于R-CNN的精准型智能送药小车开发系统

基于R-CNN的精准型智能送药小车开发系统

扫码查看
2020 年开始,疫情肆虐,对人们的身体健康造成了巨大危害.在公共场所中,人与人之间的近距离接触加剧了病毒传播的风险.特别是在医院中,医护人员和住院患者感染后,不仅会削弱医护力量,还会威胁更多患者的身体健康.因此,设计了一款精准型智能送药小车,为医院住院部护士站提供病房药物配送服务.该小车基于STM32F407ZGT6 核心板搭建,利用OpenMV进行房间号的精准识别;通过基于深度学习的目标检测算法,利用R-CNN进行模型训练,大大提高了OpenMV的识别精准度;经过实际训练和测试,该小车的最终识别精准度可达99.2%.
Development System of Precision Intelligent Medicine Delivery Cart Based on R-CNN
Since 2020,the COVID-19 epidemic has caused significant harm to people's health.In public places,close contact between individuals increases the risk of transmission.Hospitals,in particular,are high-risk areas where medical staff and patients can contract and spread the virus,ultimately weakening the healthcare sys-tem's ability to provide care and endangering more patients.To address this issue,the paper proposes the design of a precise and intelligent drug delivery car that can serve the nurse station of the inpatient department in hospitals.The car is built based on the STM32F407ZGT6 core board and uses OpenMV to accurately identify room numbers.By using deep learning-based object detection algorithms,the car's identification accuracy is significantly im-proved.After practical training and testing,the car's final identification accuracy can reach up to 99.2%.

intelligent medicine delivery cartR-CNNOpenMV

赵燕、施展、冯冲、刘畅、褚鑫磊、薄纯娟

展开 >

大连民族大学信息与通信工程学院,辽宁 大连 116600

智能送药小车 R-CNN OpenMV

国家自然科学基金大连民族大学创新训练项目

62176041202212026036

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(1)
  • 7