首页|基于GA改进ANN算法的车载网控系统故障诊断

基于GA改进ANN算法的车载网控系统故障诊断

扫码查看
车载网控系统是保证运行安全的一类重要控制设备,也是确保系统稳定运行的核心部件.为了提高车载网控系统故障诊断效率,通过遗传算法(GA)具有的全局寻优功能来实现对神经网络初始阈值与权值的优化,把寻优结果代到神经网络内完成训练过程;使ANN泛化方法具有的映射性能获得充分利用可以防止产生局部极小值情况,获得更高的分类精度;利用实例分析方式测试车载故障诊断过程的有效性.研究结果表明:采用GA改进ANN算法可以有效优化平均误差及数据正确率,有效降低迭代次数,表明可以通过GA改进ANN方法来提升神经网络运算性能.经过遗传算法优化处理的ANN在训练过程中可以获得比初始ANN更快时收敛速率.
Fault Diagnosis of Vehicle Network Control System Based on GA Improved ANN Algorithm
Vehicle-mounted network control system is a kind of important control equipment to ensure the safe-ty of operation,and also the core component to ensure the stable operation of the system.In order to improve the fault diagnosis efficiency of on-board network control system,the global optimization function of genetic algorithm(GA)is used to optimize the initial threshold and weight of neural network,and the optimization results are substi-tuted into the neural network to complete the training process.Making full use of the mapping performance of ANN generalization method can prevent the occurrence of local minimum and obtain higher classification accuracy.An example is used to test the validity of on-board fault diagnosis process.The results show that using GA to improve ANN algorithm can effectively optimize the average error and data accuracy,and effectively reduce the number of iterations,indicating that GA can improve ANN method to improve the performance of neural network.The ANN optimized by genetic algorithm can get faster convergence rate than the initial ANN in the training process.

vehicle-mounted network control systemfault diagnosisgenetic algorithmANNeffectivenessclassification accuracy

杨慧荣

展开 >

河南工业贸易职业学院 汽车工程学院,河南 郑州 451191

车载网控系统 故障诊断 遗传算法 ANN 有效性 分类精度

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(1)
  • 10