首页|基于谱图小波的神经精神疾病患者脑功能网络多尺度分析

基于谱图小波的神经精神疾病患者脑功能网络多尺度分析

扫码查看
基于图信号处理,针对神经精神病患者的脑功能网络展开研究,采用谱图小波变换对脑功能网络进行多尺度分析,根据实验数据构建图拉普拉斯矩阵,从中选取最大特征值对谱图小波变换滤波器进行设计.之后结合血氧水平依赖对比度信号计算出受试者各脑区的谱图小波系数,对其进行多尺度组间差异分析,发现脑功能网络在不同频段下的能量分布存有异常,并对对应的异常脑区予以明确.所采用的谱图小波变换是目前针对不规则数据域中信号展开多尺度分析的最有效方法之一,对其他疾病患者脑功能网络多尺度分析研究具有重要的现实意义.
Multi-scale Analysis of Brain Functional Networks in Patients with Neuropsychiatric Disorders Based on Spectral Wavelets
Based on graph signal processing,the brain functional network of neuropsychiatric patients is stud-ied,and the spectral wavelet transform is used to analyze the brain functional network at multiple scales,and the Laplace matrix is constructed according to the experimental data,from which the maximum eigenvalue of the spec-tral wavelet transform filter is selected for designing.After that,the spectral wavelet coefficients of each brain re-gion in each subject are calculated by combining the blood oxygen level-dependent contrast signal,and then ana-lyzed the multiscale intergroup difference analysis to find out that the energy distribution of the functional brain net-work in different frequency bands is abnormal,and the corresponding abnormal brain regions are clarified.The spectrogram wavelet transform is one of the most effective methods for multiscale analysis of signals in irregular data domains,which is of great practical significance for the study of multiscale analysis of functional brain networks in patients with other diseases.

functional brain networkgraph signal processingmultiscale analysisspectrogram wavelet trans-form

贾亦非

展开 >

太原学院计算机科学与技术系,山西 太原 030032

脑功能网络 图信号处理 多尺度分析 谱图小波变换

山西省自然科学基金面上项目山西省研究生创新项目太原师范学院研究生创新项目

2023030212211722023SJ276SYYJSYC-2394

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(3)