首页|基于YOLOv8的轻量化道路裂缝检测模型

基于YOLOv8的轻量化道路裂缝检测模型

扫码查看
道路裂缝是主要的路面病害之一,及时、有效地检测道路裂缝对路面养护和管理非常重要.为减少模型参数量,提高推理速度,提出一种基于YOLOv8 改进的轻量化道路裂缝检测模型.该模型通过在YOLOv8 网络中的Neck层嵌入轻量化模块FasterNet,减少冗余计算和内存访问的同时,可以更有效的提取空间特征.在自制道路裂缝数据集上进行实验验证算法的检测效果,实验结果表明,改进后的模型可大幅减少模型参数和计算量,而且Recall和MAP均有一定程度的提升,在保证路面裂缝检测精度的同时也便于在嵌入式设备中部署.
A Lightweight Road Crack Detection Model Based on YOLOv8
Road cracks are one of the main pavement diseases,and timely and effective detection of road cracks is crucial for pavement maintenance and management.To reduce the model parameter size,improve infer-ence speed,a lightweight road crack detection model based on improved YOLOv8 is proposed.This model embeds a lightweight module called FasterNet into the Neck layer of the YOLOv8 network,that reducing redundant compu-tations and memory access while effectively extracting spatial features.Experimental verification of the algorithm's detection performance is conducted on a self-made road crack dataset.The results show that the improved model significantly reduces model parameters and computational complexity,while also improving Recall and MAP to a certain extent.It ensures the accuracy of road crack detection and facilitates deployment on embedded devices.

road cracktarget detectionYOLOv8lightweight

任晶晶、徐志远

展开 >

太原学院智能与自动化系,山西 太原 030032

道路裂缝 目标检测 YOLOv8 轻量化

山西省高等学校教学改革创新项目大学生创新创业训练计划项目

J20221194TYX2022034

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(4)