首页|基于YOLOv5的汽车轮轴分型检测技术研究

基于YOLOv5的汽车轮轴分型检测技术研究

扫码查看
货车轮轴数是限定其载重量的重要依据,准确的判定轴数在治理超载工作中尤为重要.基于YOLOv5 设计了一种针对货车轮轴的分型检测方法,该方法主要通过制作训练数据集、训练模型、轮轴识别并计数分型等步骤,实现对货车抓拍图像中车轮的识别及计数,进而为超限检测提供车辆轴组信息.经测试,该方法对常见货车车轮检测准确度高、抗干扰能力强、硬件成本低廉、检测速度快,在实际中能够为治超工作提供快速准确的判定依据,提高治超业务的智能化水平.
Research on the Detection Technology of Truck's Wheel Axle Classification Based on YOLOv5
The number of axle is an important basis to judge the load of truck,and the accurate number of axle is particularly important in the control of overload.In this paper,a classification detection method for truck axle is designed based on YOLOv5 framework.The method mainly realizes the recognition and counting of the wheels in the captured images of the trucks by making training data,training model,axle recognition and counting classification.The test results show that this method has high accuracy,strong anti-interference ability,less hardware cost and fast detection speed.In practice,it can provide rapid and accurate judgment basis for the work of overcontrol and improve the intelligence level of overweight management business.

YOLOv5image detectionautomobile axle identification

王彦婕

展开 >

山西省信息产业技术研究院有限公司,山西 太原 030012

YOLOv5 图像检测 汽车轮轴识别

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(4)