首页|基于差分粒子群算法的配电网状态估计

基于差分粒子群算法的配电网状态估计

扫码查看
为了对配电网运行状态进行更准确的估计,提出了一种基于DEPSO算法的配电网估算方法.采用差分进化思想对PSO算法的寻优策略进行改进,得到优化性能更好的DEPSO算法,采用IEEE33 节点系统进行仿真分析,并与差分算法和粒子群算法进行对比,结果表明,DEPSO算法对电压和电流的估计结果的平均相对误差分别为1.26%和0.79%,相比其他方法的配电网状态估计结果更准确,验证了本文所提配电网估计方法的正确性和实用性.
Distribution Network State Estimation Based on Differential Particle Swarm Optimization
In order to estimate the operating state of distribution network more accurately,a distribution net-work estimation method based on DEPSO algorithm is proposed.The optimization strategy of PSO algorithm is im-proved by using the idea of differential evolution,and DEPSO algorithm with better optimization performance is ob-tained.The IEEE33-node system is simulated and analyzed,and compared with the differential algorithm and parti-cle swarm algorithm.The results show that,the average relative error of the estimation results of voltage and current by DEPSO algorithm is 1.26%and 0.79%respectively,which is more accurate than the estimation results of dis-tribution network state by other methods,which verifies the correctness and practicability of the proposed distribu-tion network estimation method.

distribution networkstate estimationdifferential particle swarm optimizationmeasurement da-tarelative error

唐正国

展开 >

广州友智电气技术有限公司,广东 广州 510000

配电网 状态估计 差分粒子群算法 量测数据 相对误差

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(5)