首页|基于樽海鞘群算法优化支持向量机的电缆故障诊断

基于樽海鞘群算法优化支持向量机的电缆故障诊断

扫码查看
为了提高高压电缆故障诊断精度,提出了一种基于樽海鞘群算法优化SVM的电缆故障诊断方法.利用余弦相似度对电缆故障时序特征进行分析,采用樽海鞘群算法对支持向量机进行优化,建立基于樽海鞘群算法优化SVM的电缆故障诊断模型,采用配电网电缆故障录波数据进行仿真分析,并同其他电缆故障模型对比,结果表明,SSA-SVM的诊断精度为97.5%,诊断精度高于其他模型,验证了本文所提电缆故障诊断方法的实用性和有效性.
Optimization of Support Vector Machine for Cable Fault Diagnosis Based on Salp Swarm Algorithm
In order to improve the accuracy of high-voltage cable fault diagnosis,a cable fault diagnosis method based on the optimization of SVM using the bottle sea sheath swarm algorithm is proposed.It uses cosine similarity to analyze the temporal characteristics of cable faults,the salp swarm algorithm to optimize the support vector ma-chine,and establishes a cable fault diagnosis model based on the salp swarm algorithm to optimize SVM.The dis-tribution network cable fault recording data is used for simulation analysis,and comparing it with other cable fault models.The results show that the diagnostic accuracy of SSA-SVM is 97.5%,which is higher than other models,The practicality and effectiveness of the cable fault diagnosis method proposed in this article have been verified.

cablefault diagnosissalp swarm algorithmsupport vector machinediagnostic accuracy

吴志明

展开 >

广州友智电气技术有限公司,广东 广州 510000

电缆 故障诊断 樽海鞘群算法 支持向量机 诊断精度

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(5)