首页|基于粒子群优化BP神经网络的电力通信网故障诊断

基于粒子群优化BP神经网络的电力通信网故障诊断

Fault Diagnosis of Electric Power Communication Network Based on Particle Swarm Optimization BP Neural Network

扫码查看
为了提高电力通信网故障诊断结果的准确性,提出了一种基于粒子群优化BP神经网络的电力通信网故障诊断方法.采用PSO算法对BP神经网络进行优化,建立PSO-BPNN故障诊断模型,利用电力通信网测试系统产生的样本数据进行仿真分析,并与其他方法对比,结果表明,本文所提PSO-BPNN模型在诊断过程中只出现了 2 次误诊断,诊断结果的正确率高达 97.22%,诊断效果更好,验证了所提方法的有效性和实用性.
In order to improve the accuracy of fault diagnosis results in power communication networks,this paper proposes a fault diagnosis method for power communication networks based on particle swarm optimization BP neural network.The PSO algorithm is used to optimize the BP neural network and establishes a PSO-BPNN fault di-agnosis model.The sample data generated by the power communication network testing system is used for simula-tion analysis,and compared with other methods.The results showed that the PSO-BPNN model proposed in this pa-per only experienced two false diagnoses during the diagnosis process,and the accuracy rate of the diagnosis results is as high as 97.22%.The diagnosis effect is better,that verifying the effectiveness and practicality of the proposed method.

power communication networkfault diagnosisparticle swarm optimization algorithmBP neural network

孔汉辉

展开 >

广州友智电气技术有限公司,广东 广州 510000

电力通信网 故障诊断 粒子群优化算法 BP神经网络

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(5)