首页|基于粒子群优化BP神经网络的电力通信网故障诊断

基于粒子群优化BP神经网络的电力通信网故障诊断

扫码查看
为了提高电力通信网故障诊断结果的准确性,提出了一种基于粒子群优化BP神经网络的电力通信网故障诊断方法.采用PSO算法对BP神经网络进行优化,建立PSO-BPNN故障诊断模型,利用电力通信网测试系统产生的样本数据进行仿真分析,并与其他方法对比,结果表明,本文所提PSO-BPNN模型在诊断过程中只出现了 2 次误诊断,诊断结果的正确率高达 97.22%,诊断效果更好,验证了所提方法的有效性和实用性.
Fault Diagnosis of Electric Power Communication Network Based on Particle Swarm Optimization BP Neural Network
In order to improve the accuracy of fault diagnosis results in power communication networks,this paper proposes a fault diagnosis method for power communication networks based on particle swarm optimization BP neural network.The PSO algorithm is used to optimize the BP neural network and establishes a PSO-BPNN fault di-agnosis model.The sample data generated by the power communication network testing system is used for simula-tion analysis,and compared with other methods.The results showed that the PSO-BPNN model proposed in this pa-per only experienced two false diagnoses during the diagnosis process,and the accuracy rate of the diagnosis results is as high as 97.22%.The diagnosis effect is better,that verifying the effectiveness and practicality of the proposed method.

power communication networkfault diagnosisparticle swarm optimization algorithmBP neural network

孔汉辉

展开 >

广州友智电气技术有限公司,广东 广州 510000

电力通信网 故障诊断 粒子群优化算法 BP神经网络

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(5)