首页|基于改进的微信点餐推荐系统设计

基于改进的微信点餐推荐系统设计

扫码查看
针对基于经典协同过滤算法的点餐推荐系统中的数据稀疏性问题,通过加入Apriori关联规则算法并融合基于内容的相似度,进行菜品评分预测,填充评分矩阵,降低数据的稀疏度;并结合点餐个性化需求,设置基于人数的推荐标准,进一步过滤推荐列表;经与User-CF、Item-CF的对比实验,改进后的系统有效地解决了经典协同过滤算法中的数据稀疏性问题,推荐效果更好和很好的泛化性能.
Design of Wechat Order Recommendation System Based on Improved Collaborative Filtering Algorithm
In order to solve the problem of data sparsity in order-to-order recommendation system based on classical collaborative filtering algorithm,Apriori Association rule algorithm is added and the similarity degree based on content is fused to predict the food score,fill the score matrix and reduce the sparsity of the data;Com-bined with the personalized needs of meal ordering,the recommendation standard based on the number of people is set to further filter the recommendation list.After the comparison experiment with User-CF and Item-CF,the im-proved system effectively solves the problem of data sparsity in the classical collaborative filtering algorithm,and has better recommendation effect and good generalization performance.

recommendation systemApriori association rulesrecommended number of people

饶刘维、叶强胜、代世佳、陈兴文

展开 >

大连民族大学信息与通信工程学院,辽宁 大连 116600

推荐系统 Apriori关联规则 人数推荐

2024

山西电子技术
山西省电子工业科学研究院 山西省电子学会

山西电子技术

影响因子:0.197
ISSN:1674-4578
年,卷(期):2024.(5)