首页|摩擦因数对超薄316L不锈钢双极板热冲压数值模拟的影响

摩擦因数对超薄316L不锈钢双极板热冲压数值模拟的影响

扫码查看
构建了一个高温摩擦实验装置,用于测量厚度仅为 0.1 mm的超薄 316L不锈钢双极板在 5 种不同温度下的名义摩擦因数.实验结果表明,在 200℃时,超薄不锈钢板的名义摩擦因数为 1.05,远高于室温条件下的摩擦因数(0.29).基于摩擦因数随温度变化的实验结果,建立了双极板热冲压过程的有限元模型,并利用温度相关摩擦因数模拟了 0.1 mm厚 316L不锈钢双极板在热冲压成形后的微流道厚度分布.结果显示,相比于使用恒定摩擦因数的模型,采用摩擦因数随温度变化的有限元模型可以更准确地预测微流道截面的厚度分布,其预测准确性提高了 192%.
Effect of friction factor on numerical simulation of hot stamping of ultra-thin 316L stainless steel bipolar plate
A high-temperature friction experimental apparatus was constructed to measure the nominal friction factor of ultra-thin 316L stainless steel bipolar plate with thickness of 0.1 mm at five different temperatures.The experimental results indicate that at 200℃,the nominal friction factor of the ultra-thin stainless steel plate is 1.05,which is significantly higher than the friction factor at room tempera-ture(0.29).Based on the experimental results of the friction factor variation with temperature,a finite element model of hot stamping process for the bipolar plate was established.This model incorporated the temperature-dependent friction factor was used to simulate the thickness distribution of microchannels formed after hot stamping of 316L stainless steel bipolar plate with thickness of 0.1 mm.The results show that compared with using the model with constant friction factor,finite element model whose friction factor varies with temperature can more accurately predict the thickness distribution of the microchannel cross-section,and the prediction accuracy is increased by 192%.

hot stamping processfriction factornumerical simulationbipolar plate

闫卓奇、侯泽然、郭楠、王文垚、张翔鹭、闵峻英

展开 >

同济大学 机械与能源工程学院,上海 201804

热冲压 摩擦因数 数值模拟 双极板

国家重点研发计划

2020YFB1505902

2024

塑性工程学报
中国机械工程学会

塑性工程学报

CSTPCD北大核心
影响因子:0.46
ISSN:1007-2012
年,卷(期):2024.31(8)
  • 2