首页|风机齿轮箱润滑油抗氧化性能预测模型研究

风机齿轮箱润滑油抗氧化性能预测模型研究

扫码查看
旨在建立基于红外光谱法快速测定风机齿轮箱润滑油(齿轮油)抗氧化性能的方法。基于齿轮油的红外光谱数据,依次进行样本集划分、数据预处理、特征波长选择和机器学习等数据处理,最终采用多种评价指标对组合模型的性能进行综合评估。结果表明,采用标准正态变量变换(SNV)预处理后的光谱数据所建立的偏最小二乘回归模型性能最佳;两种特征波长提取方法中,主成分分析(PCA)降维效果优于连续投影算法(SPA);三种机器学习中,BP神经网络预测效果最佳。最终得出采用SNV+PCA+BP模型预测效果最优,可以更好地快速预测风机齿轮油的抗氧化性能。
Research on prediction model of antioxidant performance of wind turbine gearbox lubricating oil
This work aims to establish a method for rapidly determining the antioxidant properties of lubri-cating oil(gear oil)in wind turbine gearboxes using infrared spectroscopy.Based on the infrared spectral data of wind turbine gear oil,a series of data processing steps including sample set partitioning,data pre-processing,characteristic wavelength extraction and machine learning were sequentially performed.Final-ly,a variety of evaluation indexes were used to comprehensively evaluate the performance of the combined model.The results indicate that the partial least squares regression model established using spectral data preprocessed with standard normal variate(SNV)transformation performs the best.Among the two feature wavelength extraction methods,principal component analysis(PCA)demonstrates superior dimensionality reduction compared to the successive projections algorithm(SPA).Among the three kinds of machine learning,BP neural network has the best prediction effect.The final result indicates that the SNV+PCA+BP model has the best prediction effect,which can better and quickly predict the oxidation resistance of wind turbine gear oil.

infrared spectroscopymachine learningwind turbine gear oilantioxidant propertiesmod-el prediction

底广辉、胡远翔、司明宇、王浩宇、曹俊磊、康举

展开 >

华北电力科学研究院有限责任公司,北京 100045

北京石油化工学院 机械工程学院,北京 102617

国网冀北张家口风光储输新能源有限公司,河北 张家口 075000

清华大学 高端装备界面科学与技术全国重点实验室,北京 100084

展开 >

红外光谱 机器学习 风机齿轮油 抗氧化性能 模型预测

2024

应用化工
陕西省石油化工研究设计院 陕西省化工学会

应用化工

CSTPCD北大核心
影响因子:0.411
ISSN:1671-3206
年,卷(期):2024.53(11)