首页|基于目标规划的定日镜场设计

基于目标规划的定日镜场设计

扫码查看
针对定日镜场的优化设计问题,首先通过求解太阳的方位角和高度角,确定各定日镜的俯仰角和方位角,从而计算定日镜在不同时刻的光学效率,重点关注投影法求解阴影遮挡效率、光线追踪法和蒙特卡洛算法求解集热器截断效率等指标,建立了整个定日镜场的年平均输出热功率模型.在此基础上,通过调整吸收塔的位置以及定日镜的位置、数量和尺寸等变量,使单位面积镜面年平均输出热功率最大化,建立了单目标优化模型.由于变量数量庞大,采用遗传算法先只对定日镜的位置进行初步求解,发现定日镜的分布大致呈同心圆形态,在此基础上,利用变步长遍历进一步精确求解,最终得到了定日镜场的最优分布.
Design of Heliostat Field Based on Goal Planning
In this paper,firstly,the pitch Angle and azimuce Angle of each helostat are determined by solving the azimuce Angle and altitude Angle of the sun,so as to calculate the optical efficiency of the helostat at different times.The projection method to solve the shadow occlusion efficiency,ray tracing method and Monte Carlo algorithm to solve the collector truncation efficiency are mainly elaborated,and then the annual average output thermal power model of the whole helostat field is established.On this basis,by adjusting the position of the absorption tower,the position,number and size of the heliostat and other variables,the annual average thermal power output per unit mirror area is maximized,and a single-objective optimization model is established.Due to the large number of variables,the genetic algorithm is used to initially solve the position of the heliostat,and it is found that the distribution of the heliostat is roughly concentric.Therefore,based on the concentric distribution,the optimal distribution of heliostat field is obtained by using the method of variable step length.

optical efficiencymonte carlo algorithmsingle-objective optimizationgenetic algorithmheliostat

刘佳雪、姚遥、陈锐、叶军

展开 >

南京邮电大学计算机学院、软件学院、网络空间安全学院,江苏南京 210023

南京邮电大学理学院,江苏南京 210023

光学效率 蒙特卡洛算法 单目标优化 遗传算法 定日镜

2024

数学建模及其应用

数学建模及其应用

影响因子:0.215
ISSN:
年,卷(期):2024.13(1)
  • 16