首页|基于频率着色的稀疏贝叶斯宽带波达角估计方法

基于频率着色的稀疏贝叶斯宽带波达角估计方法

扫码查看
为了提升稀疏贝叶斯(Sparse Bayesian Learning,SBL)算法在干扰环境下对目标信号的检测能力,提出将频率着色技术(Frequency Coloring,FC)推广至SBL算法中.在SBL-FC算法中,首先将阵列接收信号通过傅里叶变换转换至各个子带,在各子带内利用SBL算法进行波达角估计,输出功率谱.不同于常规的SBL算法仅将各子带的功率谱进行简单地叠加,算法考虑干扰和目标频谱结构的差异性,对各子带进行不同的着色,使得干扰和目标轨迹在方位时间历程图上对应于不同的颜色,从而使得目标轨迹更易被提取.数值仿真和实验数据分析表明,利用目标和干扰频谱结构的差异性可有效提升SBL算法在干扰环境下对目标信号的检测能力.
Wideband direction of arrival estimation in an interference environment via the sparse Bayesian learning based on frequency coloring
In this paper,the frequency coloring technique is extended to the sparse Bayesian learning(SBL)algorithm to improve its performance of weak target detection in an interference environment.By this SBL-FC method,the array-received data are transformed into different frequency bins through Fourier transformation,and the SBL is used to estimate the directions of arrivals in each frequency bin for obtaining the power spectrum.Unlike the conventional SBL that sums the results in all frequency bins,the frequency spectrum difference between the interference and the target is considered,and the result in each frequency bin is colored differently.Based on this,the tracks of the interference and the target are shown in the bearing and time record(BTR)with different colors,making the target easily to be detected.Simulation and experimental results confirm that the performance of the SBL algorithm for target detection is improved by considering the frequency spectrum difference between the interference and the target.

direction of arrival estimationinterference environmentsparse Bayesian learningfrequency coloring

吴姚振、张亚豪、杨益新、杨龙、刘雄厚

展开 >

中国人民解放军91001部队,北京 100036

西北工业大学航海学院,陕西西安 710072

陕西省水下信息技术重点实验室,陕西西安 710072

波达角估计 干扰环境 稀疏贝叶斯 频率着色

国家自然科学基金国家自然科学基金

1190427411974286

2024

声学技术
中科院声学所东海研究站,同济大学声学所,上海市声学学会,上海船舶电子设备研究所

声学技术

CSTPCD北大核心
影响因子:0.415
ISSN:1000-3630
年,卷(期):2024.43(1)
  • 8