首页|卷积神经网络在机械故障诊断中的应用综述

卷积神经网络在机械故障诊断中的应用综述

扫码查看
卷积神经网络(Convolutional Neural Network,CNN)因在图像识别与分类方面的优越性,近年来在机械故障诊断领域得到广泛应用.由于 CNN 提取故障特征的优越性,极大促进了机械故障诊断技术的发展,但目前样本数据的不平衡、噪声干扰以及模型不可解释等问题,极大阻碍了 CNN 技术在故障诊断领域的发展.为进一步提升模型的性能,依据近年来基于CNN机械故障诊断模型的研究进展,对机械故障诊断CNN模型框架进行了分类归纳,然后讨论分析了解决样本不平衡和可解释性问题的进展,最后对CNN在机械故障诊断领域的发展方向进行了展望.
Review of Application of Convolutional Neural Networks in Mechanical Fault Diagnosis
Convolutional Neural Network(CNN)have been widely used in the field of mechanical fault diagnosis in recent years because of their advantages in image recognition and classification.Due to the superiority of CNN in extracting fault features,it greatly promotes the development of mechanical fault diagnosis technology.However,the current problems such as unbalance of sample data,noise interference and unexplainability of the model greatly hinder the development of CNN technology in the field of fault diagnosis.In order to further improve the performance of the model,based on the research progress of CNN mechanical fault diagnosis model in recent years,this paper classifies and summarizes the CNN model framework of mechanical fault diagnosis,and then discusses and analyzes the progress of solving sample imbalance and interpretability problems.Finally,the development direction of CNN in the field of mechanical fault diagnosis is prospected.

Convolution Neural Networkmechanical fault diagnosissample imbalanceinterpretability

胡海彬、刘仁鑫、刘日龙、朱威、胡惠玥

展开 >

江西农业大学,江西 南昌 330045

江西省畜牧设施技术开发工程研究中心,江西 南昌 330045

卷积神经网络 机械故障诊断 样本不平衡 可解释性

江西省学位与研究生教育教改项目资助

JXYJG-2021-074

2024

机械工程与自动化
山西省机电设计研究院 山西省机械工程学会

机械工程与自动化

影响因子:0.251
ISSN:1672-6413
年,卷(期):2024.(4)