首页|基于深度学习的钢材表面缺陷检测算法研究

基于深度学习的钢材表面缺陷检测算法研究

扫码查看
为解决工业领域中钢材表面缺陷检测模型智能化和轻量化程度不足的问题,从而提高工业机器的适应性和广泛应用性,提出了一种轻量化的钢材表面缺陷检测模型.首先,通过将 YOLOv4 的主要特征提取网络替换为 MobileNetV3,同时将 YOLOv4 中PANet网络结构的普通卷积替换为深度可分离卷积 DSC,以提高特征提取能力;然后,引入了CA(Channel Attention)注意力机制,以增强网络的特征感知能力;最后,采用剪枝技术对模型进行进一步压缩,从而构建了 YOLOv4-MEL模型.实验结果表明,优化后的模型在由东北大学发布的 NEU-DET钢材表面缺陷数据集上的表现更优,平均精度均值达到了 95.3%,并且模型参数量较小,相较于 YOLOv4 模型,该方法能够有效地实现钢材表面缺陷检测.
Research on Steel Surface Defect Detection Algorithm Based on Depth Learning
In order to solve the problem of insufficient intelligence and lightweight degree of steel surface defect detection model in the industrial field,so as to improve the adaptability and wide application of industrial machines,a lightweight steel surface defect detection model is proposed.Replace the main feature extraction network of YOLOv4 with MobileNetV3.At the same time,the ordinary convolution in the PANet network structure in YOLOv4 is replaced by the deeply separable convolution to improve the feature extraction capability;then,CA attention mechanism is introduced to enhance the ability of network feature perception;finally,the pruning technology is used to further compress the model,so as to build the YOLOv4 MEL model.The experimental results show that the optimized model performs better on the NEU-DET steel surface defect data set published by Northeastern University,with the mAP reaching 95.3%,and the amount of model parameters is small.Compared with YOLOv4 model,this method can effectively achieve steel surface defect detection.

steeldeep learninglightweight networkdefect detection

义凯

展开 >

山西省机电设计研究院有限公司,山西 太原 030009

钢材 深度学习 轻量级网络 缺陷检测

2024

机械工程与自动化
山西省机电设计研究院 山西省机械工程学会

机械工程与自动化

影响因子:0.251
ISSN:1672-6413
年,卷(期):2024.(5)
  • 2