首页|基于改进一维卷积神经网络的轴承故障诊断

基于改进一维卷积神经网络的轴承故障诊断

扫码查看
为了保障机械设备的安全稳定运行,提出了一种采用大卷积核和弱池化结构的一维卷积神经网络故障诊断模型.首先,设计大卷积核,提高模型对全局特征的敏感度,同时简化池化结构,进一步增强模型对局部特征的抽象能力;然后,嵌入批量归一化处理策略,实现故障位置及故障程度的准确识别;最后,应用凯斯西储大学的轴承公开数据集进行模型验证.实验结果显示该模型具有优秀的特征提取能力和分类精度.
Bearing Fault Diagnosis Based on Improved 1D Convolutional Neural Network
In order to guarantee the secure and steady operation of mechanical equipment,this paper proposes a 1 D convolutional neural network fault diagnosis model with large convolution kernel and weak pooling structure.Firstly,the large convolutional kernel is designed to enhance the model's sensitivity to global features.Simultaneously,the pooling structure is simplified to further strengthen the model's abstraction capability for local features.Subsequently,batch normalization processing strategy is incorporated to achieve true recognition of fault situation.Finally,the model is confirmed by the Case Western Reserve University's bearing public dataset,and the results prove that the proposed model owns fantastic feature extraction skill and classification precision.

bearingfault diagnosis1D convolutional neural networklarge convolution kernelweak pooling

田娟、吴轲

展开 >

太原科技大学 电子信息工程学院,山西 太原 030024

轴承 故障诊断 一维卷积神经网络 大卷积核 弱池化

山西省基础研究计划青年项目

202303021222163

2024

机械工程与自动化
山西省机电设计研究院 山西省机械工程学会

机械工程与自动化

影响因子:0.251
ISSN:1672-6413
年,卷(期):2024.(5)
  • 5