首页|基于LDCNN-CVR的煤矿井下图像去雾技术研究

基于LDCNN-CVR的煤矿井下图像去雾技术研究

扫码查看
针对矿井视频监控中采集到的图像对比度低、细节模糊等问题,本文提出了一种基于LDCNN-CVR(Light-DehazeNet Convolutional Neural Network-Color Visibility Restoration)的高效矿井图像去雾方法.首先通过所设计的轻量级CNN框架使用变换后的大气散射模型,联合估计透射图和大气层光进行单图的去雾降噪;然后给出了一个色彩可见性修复方法来减少在去雾图像中的色彩畸变.最后对所提出的方法进行了实验测试,对比实验数据验证了本文的除雾策略在主观和客观评价方面都优于其他算法,适用于煤矿井下图像的去雾增强,可以获得高质量的重建图像.
Image Dehazing Technology in Coal Mines Based on LDCNN-CVR
This paper proposed an efficient image dehazing method based on LDCNN-CVR(Light-DehazeNet Convolutional Neural Network-Color Visibility Restoration),aiming at the problems of the low contrast and blurred details of images captured in mine video surveillance.Firstly,it used the transformed atmospheric scattering model through a lightweight CNN frame-work to jointly estimate the transmission map and atmospheric light for single-image dehazing and noise reduction.Then,it proposed a color visibility restoration method to reduce the color distor-tion in the dehazed images.Finally,we tested the proposed method and compared the experiment data to verify that the dehazing strategy of this paper outperformed other algorithms in subjective and objective evaluations,which was suitable for dehazing enhancement of images to obtain high-quality reconstructed images in coal mines.

single image dehazingimage reconstructionconvolutional neural networkcolor visibility restoration

樊东燕

展开 >

山西工程科技职业大学信息工程学院,太原 030006

单图像去雾 图像重建 卷积神经网络 颜色可见性恢复

2024

山西煤炭
太原理工大学 山西省煤炭学会

山西煤炭

影响因子:0.138
ISSN:1672-5050
年,卷(期):2024.44(1)
  • 9