数学年刊B辑(英文版)2024,Vol.45Issue(2) :279-296.DOI:10.1007/s11401-024-0017-5

Global Stability to Steady Supersonic Rayleigh Flows in One-Dimensional Duct

Fenglun WEI Jianli LIU
数学年刊B辑(英文版)2024,Vol.45Issue(2) :279-296.DOI:10.1007/s11401-024-0017-5

Global Stability to Steady Supersonic Rayleigh Flows in One-Dimensional Duct

Fenglun WEI 1Jianli LIU2
扫码查看

作者信息

  • 1. Department of Mathematics,Shanghai University,Shanghai 200444,China
  • 2. Department of Mathematics,Shanghai University,Shanghai 200444,China;Newtouch Center for Mathematics of Shanghai University,Shanghai 200444,China
  • 折叠

Abstract

Heat exchange plays an important role in hydrodynamical systems,which is an interesting topic in theory and application.In this paper,the authors consider the global stability of steady supersonic Rayleigh flows for the one-dimensional compressible Euler equations with heat exchange,under the small perturbations of initial and boundary conditions in a finite rectilinear duct.

Key words

Compressible Euler equations/Heat exchange/Supersonic Rayleigh flow/Steady solution/Classical solution

引用本文复制引用

基金项目

国家自然科学基金(11771274)

上海市自然科学基金(20ZR1419400)

出版年

2024
数学年刊B辑(英文版)
国家教育部委托复旦大学主办

数学年刊B辑(英文版)

CSTPCD
影响因子:0.129
ISSN:0252-9599
参考文献量30
段落导航相关论文