数学年刊B辑(英文版)2024,Vol.45Issue(3) :319-348.DOI:10.1007/s11401-024-0019-3

A Dual Yamabe Flow and Related Integral Flows

Jingang XIONG
数学年刊B辑(英文版)2024,Vol.45Issue(3) :319-348.DOI:10.1007/s11401-024-0019-3

A Dual Yamabe Flow and Related Integral Flows

Jingang XIONG1
扫码查看

作者信息

  • 1. School of Mathematical Sciences,Laboratory of Mathematics and Complex Systems,Ministry of Edu-cation,Beijing Normal University,Beijing 100875,China
  • 折叠

Abstract

The author studies a family of nonlinear integral flows that involve Riesz potentials on Riemannian manifolds.In the Hardy-Littlewood-Sobolev(HLS for short)subcritical regime,he presents a precise blow-up profile exhibited by the flows.In the HLS critical regime,by introducing a dual Q curvature he demonstrates the concentration-compactness phenomenon.If,in addition,the integral kernel matches with the Green's function of a conformally invariant elliptic operator,this critical flow can be considered as a dual Yamabe flow.Convergence is then established on the unit spheres,which is also valid on certain locally conformally flat manifolds.

Key words

Hardy-Littlewood-Sobolev functional/Dual Q curvature/Integral flow

引用本文复制引用

基金项目

国家自然科学基金(12325104)

国家自然科学基金(12271028)

出版年

2024
数学年刊B辑(英文版)
国家教育部委托复旦大学主办

数学年刊B辑(英文版)

CSTPCD
影响因子:0.129
ISSN:0252-9599
参考文献量41
段落导航相关论文