数学年刊B辑(英文版)2024,Vol.45Issue(3) :413-440.DOI:10.1007/s11401-024-0021-9

Approximations to Isentropic Planar Magneto-Hydrodynamics Equations by Relaxed Euler-Type Systems

Yachun LI Zhaoyang SHANG Chenmu WANG Liang ZHAO
数学年刊B辑(英文版)2024,Vol.45Issue(3) :413-440.DOI:10.1007/s11401-024-0021-9

Approximations to Isentropic Planar Magneto-Hydrodynamics Equations by Relaxed Euler-Type Systems

Yachun LI 1Zhaoyang SHANG 2Chenmu WANG 3Liang ZHAO4
扫码查看

作者信息

  • 1. School of Mathematical Sciences,CMA-Shanghai,MOE-LSC and SHL-MAC,Shanghai Jiao Tong Uni-versity,Shanghai 200240,China
  • 2. School of Finance,Shanghai Lixin University of Accounting and Finance,Shanghai 201209,China;School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China
  • 3. School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China;School of Mathematical Sciences,Harbin Engineering University,Harbin 150001,China
  • 4. Mathematical Modelling & Data Analytics Center,Oxford Suzhou Centre for Advanced Research,Suzhou 215123,Jiangsu,China
  • 折叠

Abstract

In this paper,the authors consider an approximation to the isentropic pla-nar Magneto-hydrodynamics(MHD for short)equations by a kind of relaxed Euler-type system.The approximation is based on the generalization of the Maxwell law for non-Newtonian fluids together with the Maxwell correction for the Ampère law,hence the approximate system becomes a first-order quasilinear symmetrizable hyperbolic systems with partial dissipation.They establish the global-in-time smooth solutions to the approx-imate Euler-type equations in a small neighbourhood of constant equilibrium states and obtain the global-in-time convergence towards the isentropic planar MHD equations.In addition,they also establish the global-in-time error estimates of the limit based on stream function techniques and energy estimates for error variables.

Key words

Planar MHD equations/Relaxation limits/Global convergence/Stream function

引用本文复制引用

基金项目

国家自然科学基金(12161141004)

国家自然科学基金(12371221)

国家自然科学基金(11831011)

国家自然科学基金(12301277)

Fundamental Research Funds for the Central Universities and Shanghai Frontiers Science Center of Modern Analysis()

中国博士后科学基金(2021M692089)

出版年

2024
数学年刊B辑(英文版)
国家教育部委托复旦大学主办

数学年刊B辑(英文版)

CSTPCD
影响因子:0.129
ISSN:0252-9599
参考文献量42
段落导航相关论文