首页|基于神经网络的吕梁市光伏电站发电量预测研究

基于神经网络的吕梁市光伏电站发电量预测研究

Power Generation Forecasting of Photovoltaic Power Station in Lvliang City Based on Neural Network

扫码查看
依据吕梁市光伏电站的历史发电数据和历史气象数据,使用BP神经网络建立了光伏电站发电量预测模型.模型一的输入变量为天气类型、最高温度、最低温度和前一日的发电量,模型二的输入变量为天气类型、最高温度、最低温度和相似日的发电量.使用预测模型预测了 2021年5月10日至16日连续7天的发电量.其中模型一的平均绝对百分误差为28.89%,模型二的平均绝对百分误差为16.39%.通过对比发现,使用相似日发电量作为神经网络模型的输入变量可显著提高预测精度.

赵红梅、杨洁、贾景伟

展开 >

吕梁市乡村振兴局,山西 吕梁033000

吕梁学院物理系,山西 吕梁033000

光伏电站 发电量预测 神经网络 吕梁市

吕梁市重点研发计划(高新技术领域)项目

2020GXZ DYF21

2022

能源与节能
山西省能源研究会 山西省节能研究会

能源与节能

影响因子:0.561
ISSN:2095-0802
年,卷(期):2022.(7)
  • 7