首页|基于随机森林算法的通风网络故障判识

基于随机森林算法的通风网络故障判识

扫码查看
针对煤矿生产过程中由风阻变化引起的通风网络故障问题,以通风网络解算技术为理论基础,建立通风网络故障判识数学模型,提出 1 种基于随机森林算法的风网故障判识方法.以泰山隆安煤矿通风网络为研究对象,构建"风阻-风量"分支故障样本集,分别使用随机森林算法、BP神经网络和支持向量机进行风网阻变型故障判识试验,通过测试样本进行模型判识精度验证,判识准确率分别为91.5%、86.5%和 87.5%.结果表明,随机森林算法故障判识模型的判识准确率最高,在通风网络阻变型故障判识中具有较高的适用性.
Ventilation Network Fault Identification Based on Random Forest Algorithm
Aiming at the ventilation network fault caused by the change of wind resistance in coal mine production process,a mathematical model of ventilation network fault identification was established based on ventilation network solution technology,and a fault identification method based on random forest algorithm was proposed.Taking the ventilation network of Taishan Long'an Coal Mine as the research object,the"wind resistance-air volume"fault samples were constructed.RF,BP neural network and support vector machine were used to conduct resistance fault identification tests,and the accuracy of model identification was verified through the test samples,with the accuracy of 91.54%,86.5%and 87.5%,respectively.Random forest fault identification model has the highest accuracy,and has high applicability in ventilation network wind resistance fault diagnosis.

ventilation network solutionfault identificationrandom forestresistive fault sample

卢振

展开 >

晋能控股煤业集团泰山隆安煤矿,山西忻州 034000

通风网络解算 故障判识 随机森林 阻变型故障样本

2024

能源与节能
山西省能源研究会 山西省节能研究会

能源与节能

影响因子:0.561
ISSN:2095-0802
年,卷(期):2024.(2)
  • 13