首页|双三元思维与3×3方法

双三元思维与3×3方法

扫码查看
在处理复杂问题、制定全面策略或做出关键决策时,需从多个视角、多个层面或多个维度进行思考与分析。三支决策即三元思维、三元方法和三元计算。遵循三支决策的原则,引入了双三元思维的概念及 3×3 方法与结构。通过双三元思维结合两个三元结构,构建了一个 3×3 方法与结构,从九个不同的角度或维度进行思考、分析和解决问题。根据三级层次和三角形方法,得到了两种不同的 3×3 方法:一是在三级层次方法的基础上,每一层以三角形方法考虑三个相关问题,称为 3 层×3 角形方法;另一种是在三角形方法的基础上,每个顶点以三级层次方法考虑三个相关问题,称为 3 角形×3 层方法。作为一个案例,可以将 3×3 方法应用于可解释人工智能。借助Symbols-Meaning-Value(SMV)空间的概念,为 3×3 方法的九个元素赋予具体的语义。基于SMV空间的 3×3 方法,从不同的层次来分析和解释智能系统所需的数据、假设、工作原理及结果。这为智能系统提供了解释的构建过程及结构,使得最终的解释更易于沟通、理解和接受。
Double triadic thinking and the 3×3 methods
When dealing with complex issues,developing comprehensive strategies,or making critical decisions,it is necessary to think and analyze from multiple perspectives,levels,or dimensions.Three-way decision is triadic thinking,triadic method,and triadic computing.Following the principles of three-way decision,the concept of double triadic thinking and the associated 3×3 methods and structures are introduced.Double triadic thinking is based on a combination of two triadic structures,which allows us to think,analyze and solve problems from nine different perspectives or dimensions.Two particular 3×3 methods are proposed by combining trilevel hierarchical thinking and triangular thinking.One is the application of triangular methods at each of the three levels of a hierarchy,which is called a(3-level)×(3-angle)method.The other is the application of trilevel methods at each of the three vertices of a triangle,which is called a(3-angle)×(3-level)method.As a case study,3×3 methods are applied to explainable artificial intelligence.By means of the concept of Symbols-Meaning-Value(SMV)space,we consider specific semantics of the nine elements of a 3×3 method.The SMV space based 3×3 method can analyze and interpret the data,assumptions,principles,and outcomes of an intelligent system at multiple levels.It provides a construction process and structure of explanation for intelligent systems,making an explanation easier to communicate,understand,and accept.

three-way decisiondouble triadic thinking3×3 methodsSMV spaceexplainable artificial intelligence

索郎王青、杨海龙、杨涵、姚一豫

展开 >

陕西师范大学 数学与统计学院,陕西 西安 710119

里贾纳大学 计算机系,加拿大 里贾纳 S4S 0A2

西南交通大学 数学学院,四川 成都 610000

三支决策 双三元思维 3×3方法 SMV空间 可解释人工智能

国家自然科学基金国家留学基金委项目国家留学基金委项目

12171293202106870049202107000028

2024

陕西师范大学学报(自然科学版)
陕西师范大学

陕西师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.563
ISSN:1672-4291
年,卷(期):2024.52(3)
  • 47