首页|基于最优Copula相关性分析的短期风速预测方法

基于最优Copula相关性分析的短期风速预测方法

扫码查看
准确剖析变量间的关联关系,深入挖掘数据的潜在价值,是提升一系列基于统计分析原理所构建风速预测模型精度的关键.为最大程度保留数据的潜在价值并剔除冗余信息,首先将待选输入变量用概率密度函数拟合,其次建立风速与其他变量间的最优Copula函数,再次基于最优Copula函数求解相关系数,明确影响风速预测精度的关键输入变量,最后基于长短期记忆网络模型输出预测结果.基于我国某地区的实测数据集对所提方法进行了验证.实验结果表明,所提出的方法可有效选取关键输入变量,在减少模型训练时间的同时提升预测精度.
A Short-Term Wind Speed Prediction Method Based on Optimal Copula Correlation Analysis
Accurately analyzing the correlations among variables and deeply exploring the potential value of the data are the key to improving the accuracy of a series of wind speed prediction models constructed based on the principles of statistical analysis.To maximize the potential value of data preservation and eliminate redundant information,the input variables to be selected are firstly fitted with probability density functions,then the optimal Copula functions are constructed among wind speed and other variables,furthermore the correlation coefficients are solved in accordance with the optimal Copula functions to clarify the key input variables affecting the accuracy of the wind speed prediction,and finally the prediction results are obtained based on long short-term memory network model.The proposed method is validated based on the measured dataset of a certain region in China.The experimental results show that the proposed method could effectively select the key input variables and improve the prediction accuracy while reducing the model training time.

wind speed predictioninput variable selectioncorrelation analysisCopula function

郭顺宁、马雪、杨帆、胡文保、李嘉宇

展开 >

国网青海省电力公司,青海西宁 810008

国网青海省电力公司经济技术研究院(国网青海省电力公司清洁能源发展研究院),青海西宁 810008

清华大学电机工程与应用电子技术系,北京 100084

风速预测 输入变量选择 相关性分析 Copula函数

国家自然科学基金

52006114

2024

电网与清洁能源
西北电网有限公司 西安理工大学水电土木建筑研究设计院

电网与清洁能源

CSTPCD北大核心
影响因子:1.122
ISSN:1674-3814
年,卷(期):2024.40(2)
  • 20