首页|基于强化学习的智慧社区广义负荷协同互动调度策略

基于强化学习的智慧社区广义负荷协同互动调度策略

扫码查看
随着低碳经济在电力行业的发展,居民的节能环保意识逐步提高.针对智慧社区广义负荷灵活调度的问题,研究了基于强化学习框架的智慧社区广义负荷协同互动调度策略.基于智能电表和智能设备的数据来实现负荷管理和能源消费优化,通过分析智慧社区的负荷特性和用户的用电偏好,建立了广义负荷和储能充放电模型,构建了基于深度强化学习框架的能量管理模型,并提出一种基于柔性动作-评价(soft actor-critic,SAC)的社区能量管理方法来求解低碳社区的优化调度策略.研究结果表明,智慧社区广义负荷协同互动调度策略能够显著降低能源消费成本,同时有效减少社区碳排放.
Generalized Load Collaborative and Interactive Dispatching Strategy in Smart Communities Based on Reinforcement learning
With the advancement of the low-carbon economy in the power sector,there has been a gradual increase in residents'awareness of energy conservation and environmental sustainability.This study addresses the generalized load scheduling issue in smart communities and investigates a smart community's generalized load coordination and interactive scheduling strategy based on a reinforcement learning framework.By leveraging data from intelligent meters and devices,the study aims to optimize load management and energy consumption.By analyzing the load characteristics of smart communities and users'electricity preferences,a generalized load and energy storage charging/discharging model is developed.Subsequently,an energy management model based on a deep reinforcement learning framework is constructed,and a community energy management approach utilizing the Soft Actor-Critic(SAC)algorithm is proposed to derive optimized scheduling strategies for low-carbon communities.The effectiveness of the proposed model and approach is validated through illustrative examples.The research findings demonstrate that the smart community's generalized load coordination and interactive scheduling strategy significantly reduce energy consumption costs and effectively mitigate carbon emissions within the community.

smart communityreinforcement learningload schedulinglow-carbon economy

徐丁吉、郑杨、楚云飞、王雨薇、拾天辰、顾新、韩海腾

展开 >

国网江苏省电力有限公司镇江供电分公司,江苏镇江 212002

河海大学电气与动力工程学院,江苏南京 211100

智慧社区 强化学习 负荷调度 低碳经济

国家自然科学基金国网江苏省电力有限公司科技项目

52307090J2022156

2024

电网与清洁能源
西北电网有限公司 西安理工大学水电土木建筑研究设计院

电网与清洁能源

CSTPCD北大核心
影响因子:1.122
ISSN:1674-3814
年,卷(期):2024.40(2)
  • 43