首页|面向连锁故障风险评估的可再生能源场景聚类技术

面向连锁故障风险评估的可再生能源场景聚类技术

扫码查看
随着大规模可再生能源的集成,电力系统连锁故障风险评估和追踪的计算时间显著增加.为了解决传统方法直接基于可再生能源数据进行场景聚类可能导致评估误差的问题,该文提出了一种新的多场景风险导向聚类算法,该算法特别考虑了可再生能源的特性.在该算法中,首先采用枚举法计算不同场景的连锁故障风险,然后根据每个场景的连锁故障风险,利用模糊C-means聚类方法对场景进行聚类,使同一场景中场景的相似度最大化,并保留对连锁故障风险贡献较大的高风险场景.基于这些聚类场景,进行系统连锁故障风险评估.通过对IEEE RTS-24 系统的案例研究,验证了所提方法的准确性和效率.
A Study on Renewable Energy Scenario Clustering Technology for Power System Cascading Failure Assessment
With the integration of large-scale renewable energy sources,the computation time for risk assessment and tracking of cascading failures in power systems increases significantly.To address the issue that traditional methods may lead to evaluation errors by directly clustering scenarios based on renewable energy data,this paper proposes a new multi-scenario risk-oriented clustering algorithm that specifically considers the characteristics of renewable energy sources.In this algorithm,the cascading failure risk of different scenarios is first calculated using the enumeration method,and then,based on the cascading failure risk of each scenario,the fuzzy C-means clustering method is used to cluster the scenarios,maximizing the similarity within the same scenario and retaining high-risk scenarios that contribute significantly to cascading failure risk.Based on these clustered scenarios,the system's cascading failure risk assessment is conducted.Through a case study of the IEEE RTS-24 system,the accuracy and efficiency of the proposed method are verified.

cascading assessmentfuzzy C-means clusteringrenewable energy scenario

李小娣、柴斌、毛春翔、郭祥阳

展开 >

银川能源学院,宁夏 银川 750100

国网宁夏电力有限公司超高压公司,宁夏 银川 750001

三峡大学电气与新能源学院,湖北 宜昌 443000

级联评估 模糊C聚类 可再生能源场景

2024

电网与清洁能源
西北电网有限公司 西安理工大学水电土木建筑研究设计院

电网与清洁能源

CSTPCD北大核心
影响因子:1.122
ISSN:1674-3814
年,卷(期):2024.40(11)