首页|基于时间图卷积网络的短期电力负荷时空预测方法

基于时间图卷积网络的短期电力负荷时空预测方法

扫码查看
为了充分发掘电力负荷数据的时空特征,进一步提高负荷预测精度,结合图卷积网络和门控循环神经网络,提出了 1 种基于时间图卷积网络的短期负荷时空预测方法。分别根据电力网络的拓扑结构和历史负荷数据构造邻接矩阵和特征矩阵,形成负荷时空信息图,将负荷预测转化为多元时空序列预测问题。采用图卷积网络发掘负荷时空信息图中的空间维特征,并利用门控循环单元学习负荷历史数据中的时间维特征。将负荷的时空信息图输入预测模型进行训练,得到基于图卷积和门控循环单元的时空负荷预测模型。通过欧洲某区域级电网的真实负荷数据集对所提预测方法进行验证,并考虑了用户侧分布式新能源接入对短期负荷预测的影响。与多种典型预测方法进行对比验证,结果表明:所提出方法在预测精度上有明显提升,在 3 步预测中精度达到了 98。913%、98。239%和 97。996%;同时在分布式新能源接入情况下仍有较高的精度,3 步预测精度达到了 98。289%、97。990%和 97。731%。
A Short-Term Spatial-Temporal Power Load Forecasting Method Based on Temporal Graph Convolution Network
To fully explore the spatial-temporal characteristics of power load data and further improve forecasting accuracy,this paper proposes a short-term spatial-temporal load forecasting method based on a combination of graph convolutional networks and gated recurrent neural networks.Firstly,adjacency matrices and feature matrices are constructed based on the topological structure of the power network and historical load data,creating a spatial-temporal information graph for load forecasting.This transforms load forecasting into a multivariate spatial-temporal sequence prediction problem.Subsequently,graph convolutional networks are employed to explore spatial features within the spatial-temporal information graph,while gated recurrent units are utilized to learn temporal features from historical load data.The spatial-temporal load information graph is then input into the forecasting model for training,resulting in a spatial-temporal load forecasting model based on graph convolution and gated recurrent units.Finally,the proposed prediction model is verified through the real load data set of a regional power grid in Europe,and the impact of user-side distributed new energy generation on short-term load prediction was considered.Compared with a variety of typical prediction methods,the proposed prediction model improves the prediction accuracy.The method's three-step prediction accuracy reaches 98.913%,98.239%and 97.996%respectively,and it still has high accuracy when distributed new energy generation is connected where the three-step prediction accuracy reaches 98.289%,97.990%and 97.731%respectively.

short-term load forecastingtemporal and spatial characteristicsgraph convolutiongate recurrent unitdistributed new energy

张艺涵、杨萌、刘军会、尹硕、陈兴、王宝池、傅质馨、袁越

展开 >

国网河南省电力公司经济技术研究院,河南 郑州 450052

河海大学能源与电气学院,江苏 南京 210000

短期负荷预测 时空特征 图卷积 门控循环单元 分布式新能源

2024

电网与清洁能源
西北电网有限公司 西安理工大学水电土木建筑研究设计院

电网与清洁能源

CSTPCD北大核心
影响因子:1.122
ISSN:1674-3814
年,卷(期):2024.40(12)