首页|DOUBLE Φ-INEQUALITIES FOR BANACH-SPACE-VALUED MARTINGALES

DOUBLE Φ-INEQUALITIES FOR BANACH-SPACE-VALUED MARTINGALES

扫码查看
Let B be a Banach space,Φ1,Φ2 be two generalized convex Φ-functions and Ψ1,Ψ2 the Young complementary functions of Φl,Φ2 respectively with ∫tt0 ψ2(s)/sds≤c0ψ1(c0t) (t>t0)for some constants c0 > 0 and t0 > 0,where ψ1 and ψ2 are the left-continuous derivative functions of Ψ 1 and Ψ2,respectively.We claim that:(i) If B is isomorphic to a p-uniformly smooth space (or q-uniformly convex space,respectively),then there exists a constant c > 0 such that for any B-valued martingale f =(fn)n≥0,‖f*‖Φ1 ≤ c‖S(p)(f)‖Φ2 (or ‖S(q) (f)‖Φ1 ≤ c‖f* ‖Φ2,respectively),where f* and S(p)(f) are the maximal function and the p-variation function of f respectively; (ii) If B is a UMD space,Tvf is the martingale transform of f with respect to v =(vn)n≥0 (v* ≤ 1),then ‖(Tvf)*‖Φl ≤ c‖f*‖Φ2.

martingaleconvex Φ-inequalitymartingale transformweighted average

Wang Yingzhan、Zhang Chao、Hou Youliang

展开 >

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China

This research was supported by the National Natural Science Foundation of China

11071190

2012

数学物理学报(英文版)
中科院武汉物理与数学研究所

数学物理学报(英文版)

CSTPCDCSCDSCI
影响因子:0.256
ISSN:0252-9602
年,卷(期):2012.32(4)
  • 4