首页|AN OPTIMAL CONTROL PROBLEM FOR A LOTKA-VOLTERRA COMPETITION MODEL WITH CHEMO-REPULSION

AN OPTIMAL CONTROL PROBLEM FOR A LOTKA-VOLTERRA COMPETITION MODEL WITH CHEMO-REPULSION

扫码查看
In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of RN,N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments.

Lotka-Volterrachemo-repulsionoptimal controloptimality conditions

Diana I.HERNáNDEZ、Diego A.RUEDA-GóMEZ、élder J.VILLAMIZAR-ROA

展开 >

Universidad Industrial de Santander,Escuela de Matemáticas,A.A.678,Bucaramanga,Colombia

Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander,Colombia

3704

2024

数学物理学报(英文版)
中科院武汉物理与数学研究所

数学物理学报(英文版)

CSTPCD
影响因子:0.256
ISSN:0252-9602
年,卷(期):2024.44(2)
  • 23