首页|ON A UNIVERSAL INEQUALITY FOR APPROXIMATE PHASE ISOMETRIES

ON A UNIVERSAL INEQUALITY FOR APPROXIMATE PHASE ISOMETRIES

扫码查看
Let X and Y be two normed spaces.Let U be a non-principal ultrafilter on N.Let g:X→Y be a standard ε-phase isometry for some ε ≥ 0,i.e.,g(0)=0,and for all u,v ∈ X,||||g(u)+g(v)||±||g(u)-g(v)|||-|||u+v||±||u-v||||≤ε.The mapping g is said to be a phase isometry provided that ε=0.In this paper,we show the following universal inequality of g:for each u*∈ w*-exp||u*||Bx*,there exist a phase function σu*:X → {-1,1} and φ ∈ Y*with||φ||=||u*||≡ α satisfying that|<u*,u>-σu*(u)<φ,g(u)>|≤5/2εα,for all u∈X.In particular,let X be a smooth Banach space.Then we show the following:(1)the universal inequality holds for all u*∈ X*;(2)the constant 5/2 can be reduced to 3/2 provided that Y*is strictly convex;(3)the existence of such a g implies the existence of a phase isometryΘ:X → Y such that Θ(u)=limn,u g(nu)/n provided that Y**has the w*-Kadec-Klee property(for example,Y is both reflexive and locally uniformly convex).

ε-phase isometryphase isometryBanach space

戴端旭、阙海新、孙龙发、郑本拓

展开 >

School of Science,Jimei University,Xiamen 361021,China

Hebei Key Laboratory of Physics and Energy Technology,School of Mathematics and Physics,North China Electric Power University,Baoding 071003,China

Department of Mathematical Sciences,University of Memphis,Memphis,TN 38152,USA

NSFCNSFCNSFCNSF of Fujian Province of ChinaResearch Start-Up Fund of Jimei UniversityNSFCNSF of Hebei ProvinceFundamental Research Funds for the Central UniversitiesChina Scholarship CouncilSimons Foundation

1212632912171266121263462023J01805ZQ202101712101234A20225020102023MS164585081

2024

数学物理学报(英文版)
中科院武汉物理与数学研究所

数学物理学报(英文版)

CSTPCD
影响因子:0.256
ISSN:0252-9602
年,卷(期):2024.44(3)