首页|Online-Apriori算法的设计与研究

Online-Apriori算法的设计与研究

扫码查看
针对Apriori算法在发现关联规则时需要频繁扫描数据库以及数据库实时更新的现状,提出一种Online-Apriori算法.通过实验对比分析发现,Online-Apriori算法具有以下优点:(1)与Apriori算法相比,该算法通过以二进制位编码方式存储的新增频繁1项集所在行数扫描特定事务,在计算支持度时减少扫描事务的个数.此外,用二进制位编码形式存储行数,比直接存储行数更加节省内存空间.(2)与属性增量关联规则算法(ACA+)相比,当候选项集很多时,该算法大大减少剪枝判断的次数,降低候选项集的生成复杂度,大大缩短运行时间.
Design and Research of Online-Apriori Algorithm
An Online-Apriori algorithm is proposed to solve the problem that the Apriori algorithm needs to scan the database frequently and update the database in real time when discovering association rules.Through comparative analysis of experiments,it is found that the Online-Apriori algorithm has the following advantages:(1)Compared with the Apriori algorithm,Online-Apriori algorithm scans specific transactions by the number of rows where the newly added frequent 1 itemset is stored in binary bit encoding mode,and reduces the number of scanned transactions when calculating the support.In addition,storing the number of rows in binary bit encoding form saves more memory space than storing the number of rows directly.(2)Compared with the attribute incremental association rule algorithm(ACA+),when there are many candi-date sets,Online-Apriori algorithm greatly reduces the times of pruning judgment,reduces the generation complexity of candidate sets,and greatly shortens the running time.

association rulesOnline-Apriori algorithmbinary bit encodingattribute incremental associ-ation rule algorithm

杨星星、李明、冯依虎

展开 >

亳州学院 电子与信息工程系,安徽 亳州 236800

关联规则 Online-Apriori算法 二进制位编码 属性增量关联规则算法

安徽省教育厅自然科学重点基金项目安徽省高等学校省级质量工程项目亳州学院教研项目

KJ2021A11502021xsxxkc1892022XJXM065

2024

绍兴文理学院学报
绍兴文理学院

绍兴文理学院学报

CHSSCD
影响因子:0.267
ISSN:1008-293X
年,卷(期):2024.44(8)