首页|可压缩平面磁流体动力学方程组行波解的渐近稳定性

可压缩平面磁流体动力学方程组行波解的渐近稳定性

扫码查看
磁流体动力学(magnetohydrodynamics)研究的是导电流体在外加电磁场的运动行为,本文研究了一维空间中平面磁流体动力学方程组柯西问题的行波解的存在性和时间渐近稳定性.我们从平面磁流体动力学方程组与Navier-Stokes方程的紧密联系中受到启发,证明了在小扰动条件下可压缩平面磁流体动力学方程组行波解的时间渐近稳定性.
Asymptotic Stability of Traveling Wave Solutions for Compressible Planar Magnetohydrodynamics System
This paper is concerned with the existence and time-asymptotic nonlinear stability of traveling wave solutions to the Cauchy problem of the one-dimensional compressible planar magnetohydrodynamics system,which governs the motions of a conducting fluid in an electro-magnetic field.Motivated by the relationship between planar magnetohydrodynamics system and Navier-Stokes system,we can prove that the solutions to the compressible planar magnetohydrodynamics system tend time-asymptotically to the traveling wave,provided that the initial disturbance is small and of integral zero.

planar magnetohydrodynamics systemtraveling waveasymptotic sta-bility

罗婷

展开 >

江西财经大学信息管理学院 南昌 330032

平面磁流体动力学方程组 行波解 渐近稳定性

2024

数学学报
中国科学院数学与系统科学研究院数学研究所

数学学报

CSTPCD北大核心
影响因子:0.261
ISSN:0583-1431
年,卷(期):2024.67(5)