首页|一类分数阶预定曲率问题多泡解的存在性

一类分数阶预定曲率问题多泡解的存在性

扫码查看
我们考虑以下分数阶算子预定曲率问题:(-Δ)su=K(y)u2*s-1,u>0,u∈ Ds(RN),其中N≥3,0<s<1,2*s=2N/N-2s是分数阶临界Sobolev指数,K(y)是一正函数.当K(y)有一列模趋于正无穷大的局部极大值点的条件下,我们利用有限维约化方法,证明了上述问题任意有限个多泡解的存在性.这些解集中在K(y)的k个不同局部极大值点处.
Existence of Multi-bubbling Solutions for a Class of Fractional Prescribed Curvature Problems
We consider the following prescribed curvature problem of fractional op-erator:(-Δ)su=K(y)u2*s-1,u>0,u∈Ds(RN),where N≥3,0<s<1,2*s=2N/N-2s is the fractional critical Sobolev exponent,K(y)is a positive function.When K(y)has a sequence of strictly local maximum points moving to infinity,we use the finite dimensional reduction method to prove the existence of any finitely many multi-bubbling solutions to the above problem.These solutions concentrate at k different local maximum points of K(y).

critical exponentmulti-bubbling solutionsenergy functionalfinite di-mensional reduction

赵安澜、聂建军

展开 >

华北电力大学数理学院 北京 102206

临界指数 多泡解 能量泛函 有限维约化

2024

数学学报
中国科学院数学与系统科学研究院数学研究所

数学学报

CSTPCD北大核心
影响因子:0.261
ISSN:0583-1431
年,卷(期):2024.67(5)