首页|广义线性图嵌入分布的收敛速度

广义线性图嵌入分布的收敛速度

扫码查看
线性图序列的亏格分布已经被研究了 30多年.此前,大部分文献关注于寻找图序列嵌入分布的具体表达式、递推关系式或者对数凹的证明.近期的研究表明:对于广义线性图序列{Gon},在一定条件下,当n趋向于无穷时,Gon的嵌入分布会收敛于正态分布(参见[Adv.Appl.Math.,2021,127:102175].基于此工作,在类似的条件下,本文证明了其收敛速度的阶为1/√n.同时,论证了该收敛速度估计的最优性.最后,给出了一些具体的例子.
Rates of Convergence for the Embedding Distributions of Generalized Linear Graph Families
Sequences of genus polynomials for what became known as linear(or H-linear)families of graphs have been studied for more than 30 years.Most of previous papers concerning them aim to find recursions and expressions for genus(and Euler genus)polynomials of specific families,or try to prove the property of log-concavity.Recently,under some conditions,some researches reveal that the embedding distri-butions of generalized H-linear graph families {Gon} will tend to normal distributions when n tends to infinity(see[19]).Based on this previous work,in this article,we prove that the order of the convergence rate is1/√n.We also explain that,for the convergence rate obtained in this paper,it can been considered as optimal.In the end,we use some concrete examples to demonstrate our result.

rate of convergenceembedding distributionsH-linear family of graphsnormal distribution

张金莲、彭旭辉、陈琪瑶

展开 >

湖南财政经济学院数学与统计学院 长沙 410205

应用统计与数据科学湖南省普通高等学校重点实验室 湖南师范大学数学与统计学院 长沙 410081

湖南第一师范学院数学与统计学院 长沙 410002

收敛速度 嵌入分布 H-线性图序列 正态分布

2024

数学学报
中国科学院数学与系统科学研究院数学研究所

数学学报

CSTPCD北大核心
影响因子:0.261
ISSN:0583-1431
年,卷(期):2024.67(5)