首页|Non-Existence of Entire Solution of a Type of System of Equations

Non-Existence of Entire Solution of a Type of System of Equations

扫码查看
In this paper,we will prove that the system of differential-difference equations{(f(z)f'(z))n+p21(z)gm(z+η)=Q1(z),(g(z)g'(z))n+p22(z)fm(z+η)=Q2(z),has no transcendental entire solution(f(z),g(z))with ρ(f,g)<∞ such that λ(f)<ρ(f)andλ(g)<ρ(g),where P1(z),Q1(z),P2(z)and Q2(z)are non-vanishing polynomials.

transcendental entire functionfinite ordersystem of differential-difference equa-tions

Zhiwei ZHOU、Ying ZHANG、Zhigang HUANG

展开 >

School of Mathematics,Suzhou University of Science and Technology,Jiangsu 215009,P.R.China

Information Construction and Management Center,Suzhou University of Science and Technology,Jiangsu 215009,P.R.China

National Natural Science Foundation of China

11971344

2024

数学研究及应用
大连理工大学

数学研究及应用

影响因子:0.094
ISSN:2095-2651
年,卷(期):2024.44(2)
  • 17