首页|Commutators of Fractional Maximal Functions on Orlicz Spaces over Non-Homogeneous Metric Spaces

Commutators of Fractional Maximal Functions on Orlicz Spaces over Non-Homogeneous Metric Spaces

扫码查看
Let(x,d,p)be a non-homogeneous metric measure space satisfying the geometrically doubling condition and the upper doubling condition.In this setting,the authors prove that the commutator M(α)b formed by b ∈(RBMO)(μ)and the fractional maximal function M(α)is bounded from Lebesgue spaces Lp(µ)into spaces Lq(μ),where 1/q=1/p-α for α ∈(0,1)and p ∈(1,1/α).Furthermore,the boundedness of the M(α)b on Orlicz spaces LΦ(μ)is established.

Non-homogeneous metric measure spacefractional maximal functioncommutatorspace(RBMO)(p)Orlicz space

Guanghui LU、Xuemei LI

展开 >

College of Mathematics and Statistics,Northwest Normal University,Gansu 730070,P.R.China

2024

数学研究及应用
大连理工大学

数学研究及应用

影响因子:0.094
ISSN:2095-2651
年,卷(期):2024.44(6)