首页|Reducible Conformal Minimal Immersions with Constant Curvature from S2 to Q6

Reducible Conformal Minimal Immersions with Constant Curvature from S2 to Q6

扫码查看
Using the harmonic map theory,we study the geometry of conformal minimal two-spheres immersed in Q6,or a real Grassmannian manifold G(2,8;R)equivalently.Then we classify the linearly full reducible conformal minimal immersions with constant Gaussian curva-ture from S2 to Q6 under some conditions.We also construct specific examples of non-congruent two-spheres with the same Gaussian curvature,up to SO(8)-equivalence,for each case.

conformal minimal immersionconstant curvatureisotropy ordersecond funda-mental form

Xiaoxiang JIAO、Mingyue LI

展开 >

School of Mathematical Science,University of Chinese Academy of Sciences,Beijing 100049,P.R.China

2024

数学研究及应用
大连理工大学

数学研究及应用

影响因子:0.094
ISSN:2095-2651
年,卷(期):2024.44(6)