首页|基于BERT实现基础医学专业术语智能提取系统

基于BERT实现基础医学专业术语智能提取系统

扫码查看
在生成式人工智能的推动下,因材施教的个性化学习是现代教育的必然趋势.基于知识图谱的个性化学习路径是目前普遍采用的方式.在知识图谱的构建中,对专业术语的精准提取是最基础的工作,但仅靠人工完成,存在工作量大、易遗漏、不能及时更新的问题.文章通过自行设计标注的数据集medBaseDt,在开源预训练大模型BERT的基础上进行微调,训练完成termBERT模型,并设计开发了基础医学专业术语智能提取系统.该系统在组织学与胚胎学和病理学等教材中进行推理应用,专业术语提取准确率达到94.5±1.16%,取得了非常好的效果.通过该系统,教师能快速获取指定教材内容的专业词汇,快速完成知识图谱的设计.同时,该项技术也为后续研发AI智能构建知识图谱、智能生成试题和个性化学习打下了扎实的基础.
Construction of an intelligent medical term extraction system based on BERT model
With the advancement of generative artificial intelligence,personalized learning tailored to individual needs has become an inevitable trend in modern education,and the personalized learning paths based on knowledge graph is the most common approach.Precise extraction of specialized terms is fundamental to the construction of knowledge graphs;however,there are problems with manual extraction:heavy workload,unintentional omission,and failure to update in a timely manner.The authors designed and annotated a dataset of medBaseDt,fine-tuned BERT,a large open-source pre-trained model,trained the termBERT model,and developed an in-telligent medical term extraction system.This system has been applied to textbooks of histology,embryology,and pathology,with an accuracy rate of 94.5±1.16%,exhibiting good effect.With this system,teachers can quickly obtain specialized terms from textbooks and create knowledge graphs.This technology also lays a solid foundation for subsequent construction of automated knowledge graph,intelligent test generation,and personalized learning.

basic medicineteaching reformartificial intelligenceLarge Language ModelBERT(Bidirectional Encoder Representations from Transformers)fine-tune

李冬梅、朱朝阳、李丽、邹玲、危晓莉、陈张一、彭慧琴

展开 >

浙江大学医学院基础医学系实验教学中心,杭州 310058

基础医学 教学改革 人工智能 大语言模型 BERT 微调

2024

基础医学教育
山西医科大学

基础医学教育

影响因子:1.093
ISSN:2095-1450
年,卷(期):2024.26(11)