首页|丙型肝炎肝硬化患者进展为肝细胞肝癌预测模型建立及验证

丙型肝炎肝硬化患者进展为肝细胞肝癌预测模型建立及验证

扫码查看
目的 利用实验室常用检测指标筛选丙型肝炎肝硬化患者进展为肝细胞癌(hepatocellular carcinoma,HCC)的影响因素,并利用这些指标建立预测模型并验证.方法 收集2020年6月~2023年5月在西安交通大学第一附属医院住院治疗的丙型肝炎肝硬化患者231例和丙型肝炎HCC患者179例作为训练集,2023年6月~2024年2月住院治疗的丙型肝炎肝硬化患者105例和丙型肝炎HCC患者86例作为验证集.比较训练集两组研究对象的实验室常规检测指标,应用Logistic回归分析筛选肝细胞癌发生的独立预测因素.采用受试者工作特征(receiver operating characteristic,ROC)曲线构建模型及验证.结果 训练集中HCC组年龄、男性比例、ALT,AST,AFP,WBC,NEU,MO,PLT,MPV,PDW,Fbg,NLR及PLR水平均高于肝硬化组(H=-9.07~-2.19),而INR及LMR水平均低于肝硬化组(H=-4.49,-2.65),差异具有统计学意义(均P<0.05),TP,eGFR,LY及AST/ALT值在两组患者间差异无统计学意义(H=-1.46~-0.15,均 P>0.05).多因素 Logistic 回归分析显示,年龄(OR=1.048,95%CI:1.023~1.074)、男性(OR=1.467,95%CI:1.413~1.765)、AST(OR=1.010,95%CI:1.002~1.019)、NEU(OR=1.186,95%CI:1.018~1.382)、Fbg(OR=2.245,95%CI:1.639~3.076)是肝癌患者的独立危险因素(均P<0.05),用此5个独立危险因素构建HCC列线图预测模型,训练集 AUC(95%CI)为 0.813(0.771~0.854),验证集 AUC(95%CI)为 0.712(0.639~0.784),Hosmer-Lemeshow检测显示训练集P=0.650,验证集P=0.310模型的拟合度较好.结论 基于年龄、性别、AST,NEU,Fbg建立的HCC预测模型具有良好的预测效能和临床应用价值.
Establishment and Validation of Prediction Model for Hepatocellular Carcinoma Progression in Patients with Hepatitis C Cirrhosis
Objective To screen the influencing factors of hepatitis C cirrhosis patients progressing to hepatocellular carcinoma(HCC)using commonly used laboratory testing indicators,establish a prediction model using these indicators and validate them.Methods A total of 231 patients with hepatitis C cirrhosis and 179 patients with hepatitis C HCC hospitalized at the First Affiliated Hospital of Xi'an Jiaotong University between June 2020 and May 2023 were enrolled as the training set,and 105 patients with hepatitis C cirrhosis and 86 patients with hepatitis C HCC hospitalized between June 2023 and February 2024 were enrolled as the validation set.The routine laboratory test indexes of the study subjects in the two groups within the training set were compared,and logistic regression analysis was applied to screen the independent predictors of hepatocellular carcinoma occurrence.Receiver operating characteristic(ROC)curve was used to construct the curve model and validate the model.Results The age,male ratio,ALT,AST,AFP,WBC,NEU,MO,PLT,MPV,PDW,Fbg,NLR and PLR levels of the HCC group were higher than those of the cirrhosis group in the training set(H=-9.07~-2.19),while the levels of INR and LMR were lower than those of the cirrhosis group(H=-4.49,-2.65),and the differences were significant(all P<0.05).The differences in TP,eGFR,LY and AST/ALT values between the two groups of patients were not significant(H=-1.46~-0.15,all P>0.05).Multifactorial Logistic regression analysis showed that age(OR=1.048,95%CI:1.023~1.074),Male(OR=1.467,95%CI:1.413~1.765),AST(OR=1.010,95%CI:1.002~1.019),NEU(OR=1.186,95%CI:1.018~1.382)and Fbg(OR=2.245,95%CI:1.639~3.076)were independent risk factors for hepatocellular carcinoma patients(all P<0.05),and these five independent risk factors were used to construct the HCC column-line graph prediction model,with the AUC for the training set and the validation set AUC(95%Cl)were 0.813(0.771~0.854)and 0.712(0.639~0.784),respectively,and the Hosmer-Lemeshow test showed a good fit of the model with P=0.650 for the training set and P=0.310 for the validation set.Conclusion The prediction model of HCC based on age,gender,AST,NEU and Fbg can have good predictive efficacy and clinical application value.

hepatitis Ccirrhosishepatocellular carcinomaprediction model

武倩、李英、马燕粉、仝晓宁、张宁、何晓璇、王晓琴

展开 >

西安交通大学第一附属医院检验科,西安 710061

陕西省康复医院检验科,西安 710065

丙型肝炎 肝硬化 肝细胞癌 预测模型

陕西省重点研发项目

2022SF-243

2024

现代检验医学杂志
陕西省临床检验中心,陕西省人民医院

现代检验医学杂志

CSTPCD
影响因子:0.713
ISSN:1671-7414
年,卷(期):2024.39(5)