首页|基于VMD-CNN-LSTM模型的短期风电功率预测

基于VMD-CNN-LSTM模型的短期风电功率预测

扫码查看
风电功率的精准预测是提高风电并网稳定性的重要手段之一.针对气象特征复杂性与随机性引起风电功率难以精准预测的问题,提出了一种基于VMD-CNN-LSTM的短期风电功率预测模型.该模型总体结构包括多气象特征序列变分模态分解(VMD)与重构、卷积神经网络(CNN)挖掘多气象特征信息、长短期记忆网络(LSTM)预测结果输出、泛化能力分析.与目前仅考虑分解历史风电功率序列分别建立预测模型方法相比,本文所提出的VMD方法物理意义明确,能够跟踪气象特征预测未来风电功率趋势.在某风电场的实际数据上进行验证,算例结果表明:该模型预测结果精度较高,降低了多气象特征因素对预测结果的影响,具有一定的实用性.
Short-Term Wind Power Prediction Based on VMD-CNN-LSTM Model
Accurate prediction of wind power is one of the important means to improve the grid-connected stability of wind power.Aiming at the problem that wind power is difficult to be accurately predicted due to the complexity and randomness of meteorological characteristics,this paper proposes a short-term wind power prediction model based on VMD-CNN-LSTM.The overall structure of the model includes multi-meteorological feature series variational mode decomposition(VMD)and reconstruction,multi-meteorological feature information mining by convolutional neural network(CNN),long and short-term memory network(LSTM)prediction results output,and generalization capability analysis.Compared with the traditional method of establishing prediction models only considering decomposition of historical wind power series,the meteorological feature VMD method proposed in this paper has clear physical significance and can track meteorological features to predict future wind power trends.The model is verified on the actual data of a wind farm,and the result of an example shows that the prediction result of this model has high precision and can reduce the influence of multiple meteorological characteristics on the prediction result,which has certain practicability.

Short-term wind power forecastingEmpirical mode decompositionConvolutional neural networkLong and short term memory networks

李润金、李丽霞

展开 >

沈阳工程学院电力学院,辽宁 沈阳 110136

沈阳工程学院自动化学院,辽宁 沈阳 110136

短期风电功率预测 经验模态分解 卷积神经网络 长短期记忆网络

2024

沈阳工程学院学报(自然科学版)
沈阳工程学院

沈阳工程学院学报(自然科学版)

影响因子:0.467
ISSN:1673-1603
年,卷(期):2024.20(1)
  • 17