首页|改进的YOLOv4头盔佩戴目标检测研究

改进的YOLOv4头盔佩戴目标检测研究

扫码查看
针对骑手在骑行时是否佩戴头盔对交通安全的影响问题,提出了一种改进的YO-LOv4算法,能够更准确地识别和检测骑手是否佩戴头盔,从而为骑手提供安全保障.首先,选择轻量级网络MobileNetv1作为主干特征网络,并将YOLOv4网络中尺寸为3×3、步长为1的标准卷积层均替换为深度可分离卷积,减少模型计算量的同时提升检测速度;其次,引入ECA注意力机制,关注重点特征并抑制非必要特征,增加特征网络表现力;最后,引入改进的损失函数Focal-EIOU,改善常见的样本不均衡问题.实验结果表明:改进的YOLOv4算法生成的模型权重大小为48.43 M,是YOLOv4算法权重大小的19.3%,检测速度由33.40 帧/秒提升至50.40 帧/秒,mAP值为95.56%,在满足精确性的前提下更有利于轻量化部署.
Research on Improved Object Detection of YOLOv4 Helmet Wearing
An improved YOLOv4 algorithm is proposed to address the issue of whether riders wear helmets while riding,which can more accurately identify and detect whether they are wearing helmets,thereby providing stable safety protection for riders.Firstly,select the lightweight network MobileNetv1 as the backbone feature network,and the standard convolutional layers of size 3×3 and step size 1 in YOLOv4 network are replaced with depthwise separable convolutions to reduce model computation and improve detection speed.Secondly,introducing ECA attention mechanism to focus on key features and suppress non-essential features to increase the expressive power of the feature network.Finally,an improved loss function Focal EIOU is introduced to address common sample imbalance issues.The experimental results show that the weight size of the model generated by the improved YOLOv4 algorithm is 48.43 M,which is 19.3%of the weight size of the YOLOv4 algorithm.The detection speed has been improved from 33.40 frames per second to 50.40 frames per second,and the mAP value is 95.56%.This is more conducive to lightweight deployment while meeting the accuracy requirements.

YOLOv4Object detectionMobileNetv1ECA attention mechanismFocal-EIOU

余晨晨

展开 >

安徽理工大学 机械工程学院,安徽 淮南 232001

YOLOv4 目标检测 MobileNetv1 ECA注意力机制 Focal-EIOU

芜湖市研究院研发专项基金资助项目

ALW2021YF10

2024

沈阳工程学院学报(自然科学版)
沈阳工程学院

沈阳工程学院学报(自然科学版)

影响因子:0.467
ISSN:1673-1603
年,卷(期):2024.20(1)
  • 3