首页|基于CNN-GRU-Attention的多步超短期风电功率预测

基于CNN-GRU-Attention的多步超短期风电功率预测

扫码查看
针对当前预测模型在预测过程中信息缺失与准确性不高的问题,提出了一种以GRU网络为基础的预测模型.首先,建立了CNN-GRU-Attention预测模型结构,该模型具有预测精度高的优势,解决了在预测过程中大量序列信息损失的问题;其次,采用擅长处理时间序列数据并且能解决简单神经网络长期依赖问题的GRU模型,提出了利用CNN网络和Attention层分别对输入数据和模型网络中间数据进行深度挖掘和处理;再次,为了提高预测模型在训练时的稳定性与精确性,利用Adam优化器优化模型参数;最后,通过某风电场的历史运行数据进行预测.预测结果表明:基于CNN-GRU-Attention的风电功率预测模型进一步提高了预测精度,验证了此模型的适用性.
Multi-step Ultra-short-term Wind Power Prediction Based on CNN-GRU-Attention
Aiming at the problem of information loss and low accuracy in the current prediction model,a prediction model based on GRU network is proposed.Firstly,the CNN-GRU-Attention prediction model structure is established.The model has the advantage of high prediction accuracy and solves the problem of sequence information loss in the prediction process.The GRU model,which is good at processing time series data and solves the problem of long-term dependence of neural network,is proposed to introduce CNN network and Attention layer to deeply mine and process the input data and the intermediate data of model network respectively.In order to improve the stability and accuracy of the prediction model during training,the Adam optimizer is used to optimize the model parameters.Finally,the historical operation data of a wind farm is predicted.The results show that the wind power prediction model based on CNN-GRU-Attention further improves the prediction accuracy and verifies the applicability of this model.

Wind power predictiondeep learninggated recurrent unitattention mechanism

孙圣博、高阳、谷彩连、许傲然

展开 >

沈阳工程学院 电力学院,辽宁 沈阳 110136

风电功率预测 深度学习 门控循环单元网络 注意力机制

辽宁省科技厅重点研发项目

2020JH2/10100036

2024

沈阳工程学院学报(自然科学版)
沈阳工程学院

沈阳工程学院学报(自然科学版)

影响因子:0.467
ISSN:1673-1603
年,卷(期):2024.20(3)