首页|基于差分进化算法的瞬变电磁一维反演

基于差分进化算法的瞬变电磁一维反演

扫码查看
实际采集的瞬变电磁数据包含电磁感应和激发极化效应,如何准确提取电阻率和极化率信息是电性源瞬变电磁数据处理的关键.首先,基于Cole-Cole复电阻率模型实现有限长电性源瞬变电磁法一维正演,在此基础上提出一种基于差分进化算法的电性源瞬变电磁一维反演方法.然后,在传统差分进化算法的基础上引入反向学习策略及控制参数自适应调节,加快反演的收敛速度,同时在目标函数中引入约束条件,构成最小构造反演,降低反演的多解性.最后,基于典型的三层地电模型和复杂多层模型进行理论模型测试,反演结果可有效恢复模型的电阻率和极化率.利用实测资料进行反演,反演得到的电阻率与OCCAM反演电阻率基本一致.在此电阻率约束的基础上,进一步反演得到极化率信息.反演结果准确地提取了实测数据中的电阻率信息,得到了地下介质的极化率分布,证明了算法的准确性和适用性.
Transient electromagnetic one-dimensional inversion based on differential evolution algorithm
The transient electromagnetic(TEM)data collected in practice encompasses both electromagnetic in-duction and induced polarization(IP)effects.Accurately extracting information on resistivity and polarization is crucial in the interpretation of electrical source TEM data.Therefore,firstly,the forward modeling is achieved by the finite-length electric source TEM method with a Cole-Cole complex resistivity model.On this basis,a one-dimensional inversion method of electrical source TEM based on a differential evolution algorithm is proposed.Based on the traditional differential evolution algorithm,the reverse learning strategy and the adap-tive adjustment of control parameters are introduced to accelerate the convergence of the inversion.Meanwhile,constraint conditions are introduced into the objective function to form the minimum structure inversion,which reduces the multi-solution of the inversion.Based on the typical three-layer geoelectric model and complex mul-tilayer model,the theoretical model is tested,and the resistivity and polarization of the model can be effectively restored by the inversion results.Finally,the measured data are used for inversion,and the inversion resistivity is consistent with that obtained by OCCAM.On the basis of the resistivity constraint,the polarization informa-tion is obtained by further inversion.Based on this resistivity constraint,further inversion is performed to ob-tain polarization information.The inversion results indicate that the algorithm proposed in this paper can accu-rately extract resistivity information from the measured data and obtain polarization distribution of underground media.It demonstrates the accuracy and applicability of the algorithm.

one-dimensional inversionadaptive differential evolution algorithmreverse learning strategyresis-tivitypolarizationtransient electromagnetic

王少杰、周磊、谢兴兵、毛玉蓉、程见中、严良俊

展开 >

长江大学地球物理与石油资源学院,湖北武汉 430100

长江大学油气资源与勘探技术教育部重点实验室,湖北武汉 430100

一维反演 自适应差分进化算法 反向学习策略 电阻率 极化率 瞬变电磁

国家自然科学基金&&

4227410342030805

2024

石油地球物理勘探
东方地球物理勘探有限责任公司

石油地球物理勘探

CSTPCD北大核心
影响因子:1.766
ISSN:1000-7210
年,卷(期):2024.59(2)
  • 28