首页|基于人工智能的地震初至拾取方法研究进展

基于人工智能的地震初至拾取方法研究进展

扫码查看
地震初至拾取可以提供关于地下结构和地震活动的重要信息,对于地震勘探和地质研究具有重要意义.在低信噪比数据上如何自动准确地拾取初至波备受关注.文章综述了基于人工智能的地震拾取方法,对聚类、支持向量机、反向传播神经网络、卷积神经网络和循环神经网络等五类方法的原理、特点和发展历程进行了阐述.聚类、支持向量机和反向传播神经网络相对直观和可解释,但需要人工提取特征;卷积神经网络和循环神经网络能自主学习地震数据特征,但需要大量有标签数据驱动.最后,探讨了地震初至拾取所面临的挑战和未来的研究方向,指出极低信噪比初至拾取的实时性和网络的轻量化需要继续推进.
A review of artificial intelligence-based seismic first break picking methods
Seismic first break picking plays a crucial role in providing vital information concerning subsurface structures and seismic activities,thereby holding significance for seismic exploration and geological research.The automatic and accurate picking of first-arrival waves from low signal-to-noise ratio data has garnered consi-derable attention from scholars.This paper provides a comprehensive review of artificial intelligence-based methods employed for seismic picking.It presents an in-depth analysis of the principles,characteristics,and de-velopmental trajectory of five distinct types of methods:clustering,support vector machines(SVM),back-propagation neural network(BPNN),convolutional neural networks(CNN),and recurrent neural networks(RNN).Clustering,SVM and BPNN methods demonstrate a relatively intuitive and interpretable nature,al-beit requiring manual feature extraction.Conversely,CNN and RNN methods possess the ability to autono-mously learn seismic data features,yet they rely on substantial volumes of labeled data to facilitate their learn-ing process.Furthermore,this paper discusses the challenges and future research directions of seismic first break picking.Specifically,it emphasizes the imperative need to further advance the real-time capabilities for picking first break under extremely low signal-to-noise ratios and to further develop the lightweight of the net-work.

seismic explorationartificial intelligenceclusteringsupport vector machine(SVM)neural network

易思梦、唐东林、赵云亮、李恒辉、丁超

展开 >

西南石油大学机电工程学院,四川成都 610500

成都工业学院智能制造学院,四川成都 611730

地震勘探 人工智能 聚类 支持向量机 神经网络

四川省科技计划成都市技术创新研发项目四川省市场监督管道局科技项目

2021YFSY00242018-YF05-00201-GXSCSJZ2022007

2024

石油地球物理勘探
东方地球物理勘探有限责任公司

石油地球物理勘探

CSTPCD北大核心
影响因子:1.766
ISSN:1000-7210
年,卷(期):2024.59(4)
  • 22