首页|应用XGBoost算法的随机缺失地震数据重建

应用XGBoost算法的随机缺失地震数据重建

扫码查看
随着勘探目标的构造和地表地质条件的日趋复杂,地震数据经常存在不规则和不完整的问题,给后续的处理带来严重困难.针对这一难题,文中提出了一种基于XGBoost算法的地震数据重建方法.该方法从局部学习的角度出发,针对随机缺失的地震道,在其周围选择一定数量的相邻地震道作为参考.通过构建这些参考地震道的道号、采样点号与数值之间的回归模型,能够精确学习并重建出缺失地震道的数据.为全面评估该方法的性能,对模拟数据不同地震道缺失情况下进行了实验,并与基于U-net卷积神经网络和基于凸集投影的Curvelet算法等重建方法进行比较.实验结果表明,基于XGBoost算法的重建方法对随机缺失地震数据重建具有较高的精度.实际数据处理结果表明,该方法能够为后续地震资料处理提供高精度的规则炮集数据.
Reconstruction of randomly missing seismic data using XGBoost algorithm
With the increasing complexity of the structure and the surface geological conditions of the explora-tion target,the problems of irregular and incomplete data often occur in the process of seismic data acquisition,which brings serious difficulties to the follow-up data processing.To solve this problem,this paper proposes a seismic data reconstruction method based on the XGBoost algorithm.From the perspective of local learning,this method selects a certain number of adjacent seismic traces around the randomly missing seismic traces as a reference.By constructing the regression model between the trace numbers,sampling point numbers and their values of the reference seismic traces,the missing seismic trace data can be accurately learned and recon-structed.In order to fully evaluate the performance of the proposed method,the experiments are performed on simulated data with different missing seismic traces,and the reconstruction methods such as U-net convolutional neural network and Curvelet algorithm based on projection onto convex sets are compared.The experimental re-sults show that the reconstruction method based on the XGBoost algorithm presents high accuracy in the recon-struction of randomly missing seismic data.The actual data processing results show that this method can pro-vide high-precision regular shot gather for the follow-up seismic data processing.

seismic data reconstructionXGBoost algorithmprojection onto convex setsmachine learningU-net

李山、田仁飞、刘涛

展开 >

成都理工大学地球物理学院,四川成都 610059

大庆油田有限责任公司呼伦贝尔分公司,黑龙江大庆 163712

地震数据重建 XGBoost算法 凸集投影 机器学习 U-net

国家自然科学基金项目

41304080

2024

石油地球物理勘探
东方地球物理勘探有限责任公司

石油地球物理勘探

CSTPCD北大核心
影响因子:1.766
ISSN:1000-7210
年,卷(期):2024.59(5)