首页|应用曲率谱和Siamese网络的叠前深度偏移速度建模

应用曲率谱和Siamese网络的叠前深度偏移速度建模

扫码查看
速度建模是叠前深度偏移的重要环节,通常需要在层位约束下对观测点的地层速度进行横向外推,然而在速度建模初期缺乏地震解释层位等格架信息.为此,文中提出了一种基于曲率谱横向相似性和改进循环结构Siamese网络的速度模型建立方法.Siamese网络是目前常用的基于深度学习的目标识别和追踪网络,可以快速进行目标图像的相似度对比,而且不需要人工制作标签.曲率谱可以看成反应地层特征和速度信息的二维图像,将速度建模作为横向特征相似性类比问题,通过类比曲率谱可以自动得到地层的格架和速度更新信息.首先,将叠前深度偏移后的道集转换为曲率谱;其次,确定待搜索曲率谱图像及其对应的目标追踪对象,并求取当前追踪对象与目标追踪对象的相似系数;然后,基于相似系数更新参考曲率谱图像和当前追踪对象;最后,在遍历完全部追踪对象时,基于各个追踪对象的层速度及深度建立速度模型.理论模型和实际数据试验结果表明,该方法能在没有解释资料的条件下快速生成符合地质构造和地层特征的速度模型.
Prestack depth migration velocity modeling with curvature spectrum and Siamese network
Velocity modeling is an important part of prestack depth migration,which usually requires lateral ex-trapolation of the formation velocity of observation points under layer constraints.However,in the early stage of velocity modeling,there is a lack of framework information such as the seismic interpretation layer.There-fore,a method for establishing a velocity model with Siamese networks based on curvature spectrum lateral simi-larity and improved cyclic structure is proposed in the article.Siamese network is currently a commonly used deep learning based object recognition and tracking network,which can quickly compare the similarity of target images without the need for manual labeling.The curvature spectrum can be seen as a two-dimensional image that reflects the characteristics and velocity information of the formation.Velocity modeling as a lateral feature similarity analogy problem can automatically obtain the framework and velocity update information of the forma-tion by analogy with the curvature spectrum.Firstly,the prestack depth migrated gathers are converted into cur-vature spectra;Secondly,the curvature spectrum images are determined to be searched and its corresponding target tracking object,and the similarity coefficients between the current tracking target and the objective tracking target are calculated;Then,the reference curvature spectrum image and the current tracked object are updated based on the similarity coefficient;Finally,with all tracking objects traversed,a velocity model is established based on the layer velocity and depth of each tracked object.Theoretical models and actual data experimental re-sults show that this method can quickly generate velocity models that are congruent with geological structures and stratigraphic characteristics without interpretation data.

curvature spectrumSiamese networkprestack depth migrationvelocity modelinglateral simila-ritysimilarity coefficient

首皓、曾庆才、胡莲莲、丁玲、王彦春、孙鲁平

展开 >

中国石油勘探开发研究院,北京 100083

中国地质大学(北京)地球物理与信息技术学院,北京 100083

曲率谱 Siamese网络 叠前深度偏移 速度建模 横向相似性 相似系数

2024

石油地球物理勘探
东方地球物理勘探有限责任公司

石油地球物理勘探

CSTPCD北大核心
影响因子:1.766
ISSN:1000-7210
年,卷(期):2024.59(6)