首页|基于多阶振幅谱面积差的Q值估计方法

基于多阶振幅谱面积差的Q值估计方法

扫码查看
常规Q值估计方法易受频段、子波叠加及噪声等因素的影响.为此,在振幅谱指数项 1~4 阶泰勒级数展开基础上推导出不同阶次振幅谱面积差的Q值估计方法(ASAD法),并将对数谱面积差法(LSAD法)及1~4 阶ASAD法应用于实际叠前CMP道集中.结果表明:相对于LSAD法而言,不同阶次ASAD算法受频段选择及子波宽度的影响更小,抗噪性更强;新方法还可以处理复杂叠后数据,并能够获得良好的Q值估计结果;2~4 阶ASAD法的Q值估计结果一致性较强,且ASAD法Q估计值的反Q滤波结果同向轴连续性更强、纵向成像分辨率更高.
Q estimation based on method of amplitude spectral area difference with different order
Conventional Q estimation methods are often affected by factors such as frequency band,wavelet superposition,and noise.To address these issues,this paper introduces a novel Q-value estimation method called the amplitude spectrum area difference(ASAD)method,based on Taylor series expansion of the amplitude exponent factor at various orders.This method,along with the logical spectrum area difference(LSAD),is applied to the real pre-stack CMP gather data.Results indicate that the ASAD method,especially at 1st-4th order,shows reduced sensitivity to frequency band limitations,wavelet imperfection,and noise interference compared to the LSAD method.Additionally,the ASAD method is effective for process-ing post-stack complex seismic data,yielding accurate Q estimations.The Q values obtained using the 2nd-4th order of AS-AD method are consistent,and inverse Q filtering based on these values enhances the continuity of seismic wavelet events and improves the precision of seismic imaging.

seismic waveletQ estimationTaylor series expansionamplitude spectrumstabilitynoise interference

张瑾、王彦国、王洋、李红星、郝亚炬、张翠芳

展开 >

东华理工大学地球物理与测控技术学院,江西 南昌 330013

江西省防震减灾与工程地质灾害探测工程研究中心,江西 南昌 330013

中国地震应急搜救中心,北京 100049

地震子波 Q值估计 泰勒级数展开 振幅谱 稳定性 抗噪性

国家自然科学基金项目江西省重点研发计划项目江西省自然科学基金项目江西省自然科学基金项目江西省教育厅科学技术研究项目江西省防震减灾与工程地质灾害探测工程研究中心开放基金项目东华理工大学博士科研启动基金项目

4200411420212BBG7301120212BCJ2300220232ACB213013GJJ220707SDGD202206DHBK2022005

2024

中国石油大学学报(自然科学版)
中国石油大学

中国石油大学学报(自然科学版)

CSTPCD北大核心
影响因子:1.169
ISSN:1673-5005
年,卷(期):2024.48(5)