首页|基于深度学习加速的油藏数值模拟自动历史拟合方法

基于深度学习加速的油藏数值模拟自动历史拟合方法

扫码查看
历史拟合是降低油藏模型不确定性的重要方法,是对油藏进行生产动态预测和开发方案设计的基础.由于油藏模型往往包含数十万甚至数百万个不确定参数,重复调用油藏数值模拟器将对历史拟合的计算效率造成严重影响.针对该问题,提出一种基于多样视角深度全卷积编码-解码神经网络的油藏数值模拟代理模型构建方法.模型包含编码-解码单元和时间处理单元两部分,嵌入多样视角网络(VoVNet)的编码-解码单元实现输入参数的空间特征提取,而时间处理单元用来捕获时间的影响.经过训练的代理模型能够以图像-图像的形式实现从油藏渗透率场到压力场和饱和度场的预测,从而为自动历史拟合提供快速的生产动态响应.将所构建的代理模型与多重数据同化集合平滑方法(ES-MDA)结合,形成基于深度学习加速的油藏数值模拟自动历史拟合方法.结果表明:所提出的代理模型能够有效预测油藏压力场和饱和度场的动态变化;与传统油藏数值模拟相比,代理模型预测的生产动态与之相吻合,同时运算速度大大提升;基于代理模型的自动历史拟合方法能够实现油藏渗透率场的准确反演,且在计算效率上表现出较大优势.
Deep-learning-based acceleration method for automatic history matching of reservoir numerical simulation
History matching is an important technique to reduce geological uncertainty in reservoir modeling,and it is the ba-sis for oil field production prediction and development scheme design.Since a reservoir geo-model contains a lot of parame-ters with thousands or even millions of uncertain data,a repeated invocation of the reservoir numerical simulator tremendously impacts the computational efficiency during history matching.To solve this problem,a multi-view deep convolution coding-decoding neural network model was proposed for surrogate reservoir modeling.The model consists of a coding-decoding unit and a time-processing unit.The coding-decoding unit embedded in the variety of view networks(VoVNet)can extract the spatial features of the input parameters,while the time processing unit was used to capture the influence of time series.The trained surrogate model can predict pressure and saturation from permeability data in an image-to-image form,providing fast production performance prediction for automatic history matching.Moreover,the proposed surrogate model was incorporated into a multiple data assimilation ensemble smoother(ES-MDA)framework to create a fast deep-learning-based automatic his-tory matching method.The results show that the proposed surrogate model can effectively predict the pressure and saturation distributions in the reservoir at a given time.The production performance predicted using the surrogate model is consistent with that calculated using the traditional reservoir simulation models,while the calculation efficiency is improved extensively.The surrogate-based automatic history matching method can provide accurate inversion of the permeability distribution and demonstrated superiorities in computational efficiency.

automatic history matchingnumerical reservoir simulationsurrogate modeldeep learning

王森、向杰、冯其红、杨雨萱、王振、王相

展开 >

深层油气全国重点实验室(中国石油大学(华东)),山东 青岛 266580

中国石油大学(华东)石油工程学院,山东 青岛 266580

中海石油(中国)有限公司深圳分公司南海东部研究院,广东 深圳 518000

山东石油化工学院,山东 东营 257061

中国石化胜利油田数智化管理服务中心,山东 东营 257015

常州大学石油与天然气工程学院,江苏 常州 213164

展开 >

自动历史拟合 油藏数值模拟 代理模型 深度学习

国家自然科学基金项目山东省自然科学基金项目

52204027ZR2022YQ50

2024

中国石油大学学报(自然科学版)
中国石油大学

中国石油大学学报(自然科学版)

CSTPCD北大核心
影响因子:1.169
ISSN:1673-5005
年,卷(期):2024.48(5)