首页|基于动态深度可分离卷积神经网络的管道泄漏孔径识别

基于动态深度可分离卷积神经网络的管道泄漏孔径识别

扫码查看
针对传统模型为提高管道泄漏检测的精度而导致的模型结构复杂度、参数量和计算量大的问题,提出一种基于动态深度可分离卷积神经网络的管道泄漏孔径识别方法;动态卷积层将提取到的泄漏信号特征经过通道注意力权值计算和动态权值融合,通过动态深度可分离卷积层获得更强的特征表达能力,利用全局平均池化层降低网络模型参数,通过全连接层识别管道泄漏孔径.结果表明:新方法具有较高的识别精度,克服了传统模型资源开销大、功耗高的问题,降低了模型的训练时间,提升了管道泄漏孔径的识别速度,可用于工业中的管道泄漏程度监测.
Identification of pipe leak apertures based on dynamic depth-separable convolutional neural networks
Aiming at the complexity of the model structure,the number of parameters and the large amount of computation caused by the traditional model to improve the accuracy of pipeline leakage detection,a pipeline leakage aperture recognition method based on the dynamic depth-separable convolutional neural network was proposed.The dynamic convolutional layer takes the extracted leakage signal features through the calculation of channel-attention weights and the dynamic weights fu-sion,and then obtains a stronger feature through the dynamic depth-separable convolutional layer.The dynamic convolutional layer reduces the parameters of the network model by using the global average pooling layer,and the pipeline leakage aper-ture was identified by the fully connected layer.The results show that the new method has a high recognition accuracy,over-comes the problems of a large resource overhead and a high power consumption of the traditional model,reduces the training time of the model,improves the recognition speed of pipeline leakage aperture,and can be used to monitor the degree of pipeline leakage in industries.

identification of leakage aperturedynamic depth-separable convolutionlightweight networksdynamic convolu-tion

王秀芳、刘源、李月明

展开 >

东北石油大学电气信息工程学院,黑龙江 大庆 163318

泄漏孔径识别 动态深度可分离卷积 轻量化网络 动态卷积

黑龙江省自然科学基金项目

LH2022E024

2024

中国石油大学学报(自然科学版)
中国石油大学

中国石油大学学报(自然科学版)

CSTPCD北大核心
影响因子:1.169
ISSN:1673-5005
年,卷(期):2024.48(5)